Comparative Analysis of Threat Detection Techniques in Drone Networks

Автор: Syed Golam Abid, Muntezar Rabbani, Arpita Sarker, Tasfiq Ahmed Rafi, Dip Nandi

Журнал: International Journal of Mathematical Sciences and Computing @ijmsc

Статья в выпуске: 2 vol.10, 2024 года.

Бесплатный доступ

With the rapid proliferation of drones and drone networks across various application domains, ensuring their security against cyber threats has become imperative. This paper presents a comprehensive analysis and comparative analysis of the state-of-the-art techniques for detecting cyber threats in drone networks. The background provides a primer on drones, networks, drone network architectures, communication mechanisms, and enabling technologies like wireless protocols, satellite navigation, onboard computers, sensors, and flight control systems. The landscape of emerging technologies including blockchain, software-defined networking, machine learning, fog computing, ad-hoc networks, and swarm intelligence is reviewed in the context of transforming drone network capabilities while also introducing potential vulnerabilities. The paper delves into common cyber threats faced by drone networks such as hacking, DoS attacks, data breaches, and GPS spoofing. A detailed literature review of proposed threat detection techniques is provided, categorized into machine learning, multi-agent systems, blockchain, intrusion detection systems, software solutions, and miscellaneous methods. A key gap identified is handling increasingly sophisticated attacks, complex environments, and resource limitations in aerial platforms. The analysis highlights accuracy, overhead and real-time trade-offs between techniques, while factors like model optimization can influence efficacy. A comparative analysis highlights the advantages and limitations of each approach considering metrics like accuracy, scalability, flexibility, and overhead. Key observations include the trade-offs between computational complexity and real-time performance, the challenges in handling evolving attack techniques, and the dependencies between detection accuracy and factors like model selection and training data quality. The analysis provides a comprehensive reference for cyber threat detection in drone networks, benefiting researchers and practitioners aiming to advance this crucial area of drone security through robust detection systems tailored for resource-constrained aerial environments.

Еще

Drone networks, Cybersecurity, Intrusion detection systems, Anomaly detection, Machine learning, Deep learning, Blockchain, Vulnerabilities, Cyber threats, Security protocols, Satellite navigation systems, Flightcontrol systems, Swarm intelligence

Еще

Короткий адрес: https://sciup.org/15019080

IDR: 15019080   |   DOI: 10.5815/ijmsc.2024.02.04

Список литературы Comparative Analysis of Threat Detection Techniques in Drone Networks

  • Lutkevich B, (2021). Drone (UAV). Available at https://www.techtarget.com/iotagenda/definition/drone#:~:text
  • =Essentially%2C%20a%20drone%20is%20a,often%20associated%20with%20the%20military. Accessed on 7 July 2023.
  • Daley S, (2023). Drone Technology: What Is a Drone? Available at https://builtin.com/drones. Accessed on 7 July 2023.
  • Manesh, M. R., & Kaabouch, N. (2019). Cyber-attacks on unmanned aerial system networks: Detection, countermeasure, and future research directions. Computers & Security, 85, 386-401.
  • Gharibi, M., Boutaba, R., & Waslander, S. L. (2016). Internet of drones. IEEE Access, 4, 1148-1162.
  • Hassija, V., Chamola, V., Agrawal, A., Goyal, A., Luong, N. C., Niyato, D., ... & Guizani, M. (2021). Fast, reliable, and secure drone communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 23(4), 2802-2832.
  • Mohsan, S. A. H., Othman, N. Q. H., Li, Y., Alsharif, M. H., & Khan, M. A. (2023). Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intelligent Service Robotics, 16(1), 109-137.
  • Zhou, Z., Chen, J., & Liu, Y. (2020). Optimized landing of drones in the context of congested air traffic and limited vertiports. IEEE Transactions on Intelligent Transportation Systems, 22(9), 6007-6017.
  • Chang, S. Y., Park, K., Kim, J., & Kim, J. (2023). Securing UAV Flying Base Station for Mobile Networking: A Review. Future Internet, 15(5), 176.
  • Noor, F., Khan, M. A., Al-Zahrani, A., Ullah, I., & Al-Dhlan, K. A. (2020). A review on communications perspective of flying ad-hoc networks: key enabling wireless technologies, applications, challenges and open research topics. Drones, 4(4), 65.
  • Sheridan, I. (2020). Drones and global navigation satellite systems: Current evidence from polar scientists. Royal Society open science, 7(3), 191494.
  • Buggiani, V., Ortega, J. C. Ú., Silva, G., Rodríguez-Molina, J., & Vilca, D. (2023). An Inexpensive Unmanned Aerial Vehicle-Based Tool for Mobile Network Output Analysis and Visualization. Sensors, 23(3), 1285.
  • Tlili, F., Fourati, L. C., Ayed, S., & Ouni, B. (2022). Investigation on vulnerabilities, threats and attacks prohibiting UAVs charging and depleting UAVs batteries: Assessments & countermeasures. Ad Hoc Networks, 129, 102805.
  • Vasconcelos, G., Carrijo, G., Miani, R., Souza, J., & Guizilini, V. (2016, October). The impact of DoS attacks on the AR. Drone 2.0. In 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR) (pp. 127-132). IEEE.
  • Singh, N. K., Muthukrishnan, P., Sanpini, S. (2019), “Industrial System Engineering for Drones: A Guide with Best Practices for Designing”, Apress.
  • Aeronautics. Unmanned Ariel Vehicles and System: Revolutionizing the future of Aviation .Available at :https://aeronautics-sys.com/unmanned-aerial-vehicles-and-systems-revolutionizing-the-future-of-aviation/ Accessed on 11 July 11, 2023.
  • Unmanned System Technology. Flight Control Systems for UAV & Drones. Available at :https://www.unmannedsystemstechnology.com/expo/flight-control systems/#:~:text=What%20are%20flight%20control%20systems,autonomously%20by%20an%20onboard%20computer.Accessed on 11 July 11, 2023.
  • Lahmeri, M. A., Kishk, M. A., & Alouini, M. S. (2021). Artificial intelligence for UAV-enabled wireless networks: A survey. IEEE Open Journal of the Communications Society, 2, 1015-1040.
  • Ossamah, "Blockchain as a solution to Drone Cybersecurity," 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2020, pp. 1-9, doi: 10.1109/WF-IoT48130.2020.9221466.
  • Harbi, Y., Medani, K., Gherbi, C., Senouci, O., Aliouat, Z., & Harous, S. (2023). A Systematic Literature Review of Blockchain Technology for Internet of Drones Security. Arabian Journal for Science and Engineering, 48(2), 1053-1074.
  • Han, P., Sui, A., & Wu, J. (2022). Identity Management and Authentication of a UAV Swarm Based on a Blockchain. Applied Sciences, 12(20), 10524.
  • Hewa, T., Ylianttila, M., & Liyanage, M. (2021). Survey on blockchain based smart contracts: Applications, opportunities and challenges. Journal of network and computer applications, 177, 102857.
  • Alladi, T., Chamola, V., Sahu, N., & Guizani, M. (2020). Applications of blockchain in unmanned aerial vehicles: A review. Vehicular Communications, 23, 100249.
  • Allouch, A., Cheikhrouhou, O., Koubâa, A., Toumi, K., Khalgui, M., & Nguyen Gia, T. (2021). Utm-chain: blockchain-based secure unmanned traffic management for internet of drones. Sensors, 21(9), 3049.
  • B. Rawat, D., Chaudhary, V., & Doku, R. (2020). Blockchain technology: Emerging applications and use cases for secure and trustworthy smart systems. Journal of Cybersecurity and Privacy, 1(1), 4-18.
  • Hu, N., Tian, Z., Sun, Y., Yin, L., Zhao, B., Du, X., & Guizani, N. (2021). Building agile and resilient UAV networks based on SDN and blockchain. IEEE Network, 35(1), 57-63.
  • Gupta, L., Jain, R., & Vaszkun, G. (2015). Survey of important issues in UAV communication networks. IEEE communications surveys & tutorials, 18(2), 1123-1152.
  • McCoy, J., & Rawat, D. B. (2019). Software-defined networking for unmanned aerial vehicular networking and security: A survey. Electronics, 8(12), 1468.
  • Alharthi, M., Taha, A. E. M., & Hassanein, H. S. (2019, May). An architecture for software defined drone networks. In ICC 2019-2019 IEEE International Conference on Communications (ICC) (pp. 1-5). IEEE.
  • Jiang, J., Lin, C., Han, G., Abu-Mahfouz, A. M., Shah, S. B. H., & Martínez-García, M. (2022). How AI-enabled SDN technologies improve the security and functionality of industrial IoT network: Architectures, enabling technologies, and opportunities. Digital Communications and Networks.
  • Baig, B., Shahzad, A.Q. (2022). Machine Learning and AI Approach to Improve UAV Communication and Networking. In: Ouaissa, M., Khan, I.U., Ouaissa, M., Boulouard, Z., Hussain Shah, S.B. (eds) Computational Intelligence for Unmanned Aerial Vehicles Communication Networks. Studies in Computational Intelligence, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-030-97113-7_1
  • Bithas, P. S., Michailidis, E. T., Nomikos, N., Vouyioukas, D., & Kanatas, A. G. (2019). A survey on machine-learning techniques for UAV-based communications. Sensors, 19(23), 5170.
  • Pi, Y., Nath, N. D., & Behzadan, A. H. (2020). Convolutional neural networks for object detection in aerial imagery for disaster response and recovery. Advanced Engineering Informatics, 43, 101009.
  • Şengönül, E., Samet, R., Abu Al-Haija, Q., Alqahtani, A., Alturki, B., & Alsulami, A. A. (2023). An Analysis of Artificial Intelligence Techniques in Surveillance Video Anomaly Detection: A Comprehensive Survey. Applied Sciences, 13(8), 4956.
  • Duc Bui, V., Shirakawa, T., & Sato, H. (2022). Autonomous unmanned aerial vehicle flight control using multi-task deep neural network for exploring indoor environments. SICE Journal of Control, Measurement, and System Integration, 15(2), 130-144.
  • Yazid, Y., Ez-Zazi, I., Guerrero-Gonzalez, A., El Oualkadi, A., & Arioua, M. (2021). UAV-enabled mobile edge-computing for IoT based on AI: A comprehensive review. Drones, 5(4), 148.
  • Sumeyra, M. U. T. İ., & Ülkü, E. E. (2022). A Review on Machine Learning Techniques Used in VANET and FANET Networks. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2), 1150-1165.
  • Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254-1270.
  • Agrawal, R., Faujdar, N., Romero, C. A. T., Sharma, O., Abdulsahib, G. M., Khalaf, O. I., ... & Ghoneim, O. A. (2022). Classification and comparison of ad hoc networks: A review. Egyptian Informatics Journal.
  • Campion, M., Ranganathan, P., & Faruque, S. (2018). UAV swarm communication and control architectures: a review. Journal of Unmanned Vehicle Systems, 7(2), 93-106.
  • Lopez, M. A., Baddeley, M., Lunardi, W. T., Pandey, A., & Giacalone, J. P. (2021, July). Towards secure wireless mesh networks for UAV swarm connectivity: Current threats, research, and opportunities. In 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS) (pp. 319-326). IEEE.
  • Asaamoning, G., Mendes, P., Rosário, D., & Cerqueira, E. (2021). Drone swarms as networked control systems by integration of networking and computing. Sensors, 21(8), 2642.
  • Zhou, Y., Rao, B., & Wang, W. (2020). UAV swarm intelligence: Recent advances and future trends. Ieee Access, 8, 183856-183878.
  • Tank, B., & Gandhi, V. (2023). A Comparative Study on Cloud Computing, Edge Computing and Fog Computing.
  • Gupta, A., & Gupta, S. K. (2022). A survey on green unmanned aerial vehicles‐based fog computing: Challenges and future perspective. Transactions on Emerging Telecommunications Technologies, 33(11), e4603.
  • Baktyan, A., & Zahary, A. (2018). A review on cloud and fog computing integration for iot: Platforms perspective. EAI Endorsed Transactions on Internet of Things, 4(14).
  • Al-Khafajiy, M., Baker, T., Hussien, A., & Cotgrave, A. (2020). UAV and fog computing for IoE-based systems: A case study on environment disasters prediction and recovery plans. Unmanned Aerial Vehicles in Smart Cities, 133-152.
  • Shafique, A., Mehmood, A., & Elhadef, M. (2021). Survey of security protocols and vulnerabilities in unmanned aerial vehicles. IEEE Access, 9, 46927-46948.
  • Sathyamoorthy, D., Fitry, Z., Selamat, E., Hassan, S., Firdaus, A., & Zaimy, Z. (2020). Evaluation of the vulnerabilities of unmanned aerial vehicles (uavs) to global positioning system (GPS) jamming and spoofing. Defence S and T Technical Bulletin, 13, 333-343.
  • Nguyen, H. P. D., & Nguyen, D. D. (2021). Drone application in smart cities: The general overview of security vulnerabilities and countermeasures for data communication. Development and Future of Internet of Drones (IoD): Insights, Trends and Road Ahead, 185-210.
  • Siddiqi, M. A., Iwendi, C., Jaroslava, K., & Anumbe, N. (2022). Analysis on security-related concerns of unmanned aerial vehicle: Attacks, limitations, and recommendations. Mathematical biosciences and engineering, 19(3), 2641-2670.
  • Krichen, M., Adoni, W. Y. H., Mihoub, A., Alzahrani, M. Y., & Nahhal, T. (2022, May). Security challenges for drone communications: Possible threats, attacks and countermeasures. In 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH) (pp. 184-189). IEEE.
  • Pradhan, A., & Mathew, R. (2020). Solutions to vulnerabilities and threats in software defined networking (SDN). Procedia Computer Science, 171, 2581-2589.
  • Y. Liu, B. Zhao, P. Zhao, P. Fan and H. Liu, "A survey: Typical security issues of software-defined networking," in China Communications, vol. 16, no. 7, pp. 13-31, July 2019, doi: 10.23919/JCC.2019.07.002.
  • Oren, C., & Verity, A. (2020). Artificial Intelligence (AI) Applied to Unmanned Aerial Vehicles (UAVs) and its Impact on Humanitarian Action. Digital Humanitarian Network, May.
  • Tanwar, S., & Prema, K. V. (2013). Threats & security issues in ad hoc network: a survey report. International Journal of Soft Computing and Engineering, 2(6), 138-143.
  • Tsao, K. Y., Girdler, T., & Vassilakis, V. G. (2022). A survey of cyber security threats and solutions for UAV communications and flying ad-hoc networks. Ad Hoc Networks, 133, 102894.
  • Jensen, I. J., Selvaraj, D. F., & Ranganathan, P. (2019, June). Blockchain technology for networked swarms of unmanned aerial vehicles (UAVs). In 2019 IEEE 20th International Symposium on" A World of Wireless, Mobile and Multimedia Networks"(WoWMoM) (pp. 1-7). IEEE.
  • Choudhary, G., Sharma, V., Gupta, T., Kim, J., & You, I. (2018). Internet of drones (iod): Threats, vulnerability, and security perspectives. arXiv preprint arXiv:1808.00203.
  • Best, K. L., Schmid, J., Tierney, S., Awan, J., Beyene, N. M., Holliday, M. A., ... & Lee, K. (2020). How to analyze the cyber threat from drones: Background, analysis frameworks, and analysis tools (p. 96). RAND.
  • Rahman, M. A. (2020). Detection of distributed denial of service attacks based on machine learning algorithms. International Journal of Smart Home, 14(2), 15-24.
  • Arthur, M. P. (2019, August). Detecting signal spoofing and jamming attacks in UAV networks using a lightweight IDS. In 2019 international conference on computer, information and telecommunication systems (CITS) (pp. 1-5). IEEE.
  • Choudhary, G., Sharma, V., You, I., Yim, K., Chen, R., & Cho, J. H. (2018, June). Intrusion detection systems for networked unmanned aerial vehicles: a survey. In 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC) (pp. 560-565). IEEE.
  • Jabbar, R., Dhib, E., Said, A. B., Krichen, M., Fetais, N., Zaidan, E., & Barkaoui, K. (2022). Blockchain technology for intelligent transportation systems: A systematic literature review. IEEE Access, 10, 20995-21031.
  • Mitchell, R., & Chen, R. (2013). Adaptive intrusion detection of malicious unmanned air vehicles using behavior rule specifications. IEEE transactions on systems, man, and cybernetics: systems, 44(5), 593-604.
  • Kumar, C. R. S., & Mohanty, S. (2021, October). Current trends in cyber security for drones. In 2021 International Carnahan Conference on Security Technology (ICCST) (pp. 1-5). IEEE.
  • Yağdereli, E., Gemci, C., & Aktaş, A. Z. (2015). A study on cyber-security of autonomous and unmanned vehicles. The Journal of Defense Modeling and Simulation, 12(4), 369-381.
  • Sedjelmaci, H., Senouci, S. M., & Messous, M. A. (2016, December). How to detect cyber-attacks in unmanned aerial vehicles network?. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE.
  • Moustafa, N., & Jolfaei, A. (2020, September). Autonomous detection of malicious events using machine learning models in drone networks. In Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and beyond (pp. 61-66).
  • Ding, G., Wu, Q., Zhang, L., Lin, Y., Tsiftsis, T. A., & Yao, Y. D. (2018). An amateur drone surveillance system based on the cognitive Internet of Things. IEEE Communications Magazine, 56(1), 29-35.
  • Greco, C., Pace, P., Basagni, S., & Fortino, G. (2021). Jamming detection at the edge of drone networks using multi-layer perceptrons and decision trees. Applied Soft Computing, 111, 107806.
  • Umarani, S., & Sharmila, D. (2015). Predicting application layer DDoS attacks using machine learning algorithms. International Journal of Computer and Systems Engineering, 8(10), 1912-1917.
  • Ouiazzane, S., Addou, M., & Barramou, F. (2022). A multiagent and machine learning based denial of service intrusion detection system for drone networks. Geospatial Intelligence: Applications and Future Trends, 51-65.
  • Kumar, M. S., Vimal, S., Jhanjhi, N. Z., Dhanabalan, S. S., & Alhumyani, H. A. (2021). Blockchain based peer to peer communication in autonomous drone operation. Energy Reports, 7, 7925-7939.
  • Mitchell, R., & Chen, I. R. (2012, June). Specification based intrusion detection for unmanned aircraft systems. In Proceedings of the first ACM MobiHoc workshop on Airborne Networks and Communications (pp. 31-36).
  • Yin, D., Zhang, L., & Yang, K. (2018). A DDoS attack detection and mitigation with software-defined Internet of Things framework. IEEE Access, 6, 24694-24705.
  • Sedjelmaci, H., Senouci, S. M., & Ansari, N. (2016). Intrusion detection and ejection framework against lethal attacks in UAV-aided networks: A Bayesian game-theoretic methodology. IEEE Transactions on Intelligent Transportation Systems, 18(5), 1143-1153.
  • Aliyu, F., Sheltami, T., & Shakshuki, E. M. (2018). A detection and prevention technique for man in the middle attack in fog computing. Procedia computer science, 141, 24-31.
  • Hewa, T., Braeken, A., Liyanage, M., & Ylianttila, M. (2022). Fog computing and blockchain-based security service architecture for 5G industrial IoT-enabled cloud manufacturing. IEEE transactions on industrial informatics, 18(10), 7174-7185.
  • Alzoubi, Y. I., Osmanaj, V. H., Jaradat, A., & Al‐Ahmad, A. (2021). Fog computing security and privacy for the Internet of Thing applications: State‐of‐the‐art. Security and Privacy, 4(2), e145.
  • Naeem, M. A., Zikria, Y. B., Ali, R., Tariq, U., Meng, Y., & Bashir, A. K. (2023). Cache in fog computing design, concepts, contributions, and security issues in machine learning prospective. Digital Communications and Networks, 9(5), 1033-1052.
  • Ashi, Z., Al-Fawa’reh, M., & Al-Fayoumi, M. (2020). Fog computing: security challenges and countermeasures. Int. J. Comput. Appl, 175(15), 30-36.
  • Sedjelmaci, H., Senouci, S. M., & Ansari, N. (2017). A hierarchical detection and response system to enhance security against lethal cyber-attacks in UAV networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(9), 1594-1606.
Еще
Статья научная