Comparison of quasi-stationary and non-stationary solutions of electrochemical machining problems applying to precision cutting with plate electrode-tool

Бесплатный доступ

The quasi-stationary problem for modelling the process of electrochemical cutting with a plate electrode-tool is formulated. The formulation of the problem is based on the use of a stepwise function of current efficiency from the current density. Thus three areas with various conditions are formed on the machined surface. The usual stationarity condition is used in the area of high current densities. In the area of low current densities the dissolution is absent and the initial form of the boundaries remains. In the intermediate zone, the current density at each point is equal to the critical value. The presence of boundary conditions on each section of the machined surface allows to formulate a boundary problem for the analytical function of the complex variable and to find the shape of the boundary at any moment, regardless of the background. The solutions of quasi-stationary and non-stationary problems are compared, and the range of existence of quasi-stationary solutions is found.

Еще

Electrochemical shaping, stepwise function, quasi-stationary model, error estimation

Короткий адрес: https://sciup.org/147232929

IDR: 147232929   |   DOI: 10.14529/mmp190101

Список литературы Comparison of quasi-stationary and non-stationary solutions of electrochemical machining problems applying to precision cutting with plate electrode-tool

  • Клоков, В.В. Влияние переменного выхода по току на стационарное анодное формообразование / В.В. Клоков // Труды семинара по краевым задачам. - Казань: Казанский государственный университет. - 1979. - № 16. - С. 94-102.
  • Газизов, Е.Р. Метод расчета анодного формообразования двугранным катодом для произвольной зависимости выхода по току / Е.Р. Газизов, Д.В. Маклаков // Теория и практика электрофизикохимических методов обработки деталей в авиастроении. - Казань: Казанский авиационный институт. - 1994. - С. 32-35.
  • Datta, M. Fundamental Aspects and Applications of Electrochemical Microfabrication / M. Datta, D. Landolt // Electrochimica Acta. - 2000. - V. 45. - P. 2535-2558.
  • Forster, R. Micro-ECM for Production of Microsystems with a High Aspect Ratio / R. Forster, A. Schoth, W. Menz // Microsystem Technologies. - 2005. - V. 11. - P. 246-249.
  • Shin, H.Sh. Analysis of the Side Gap Resulting from Micro Electrochemical Machining with a Tungsten Wire and Ultrashort Voltage Pulses / H.Sh. Shin, B.H. Kim, Ch.N. Chu // Journal of Micromechanics and Microengineering. - 2008. - V. 18. - P. 1-6.
  • Wang, S. Micro Wire Electrode Electrochemical Cutting with Low Frequency and Small Amplitude Tool Vibration / S. Wang, D. Zhu, Y. Zeng, Y. Liu // International Journal of Advanced Manufacturing Technology. - 2011. - V. 53, № 5-8. - P. 535-544.
  • Wang, F.Y. Numerical Simulation of Electrochemical Machining Process and Machined Surface Prediction / F.Y. Wang, J.W. Xu, J.S. Zhao // Key Engineering Materials. - 2011. - V. 45, № 8. - P. 99-105.
  • Qu, N. Wire Electrochemical Machining with Axial Electrolyte Flushing for Titanium Alloy / N. Qu, X. Fang, W. Li, Y. Zeng, Di Zhu // Chinese Journal of Aeronautics. - 2013. - V. 26, № 1. - P. 224-229.
  • Zhu, D. Cathode Design Investigation Based on Iterative Correction of Predicted Profile Errors in Electrochemical Machining Of Compressor Blades / D. Zhu, C. Liu, Z. Xu, J. Liu // Chinese Journal of Aeronautics. - 2016. - V. 29, № 4. - P. 1111-1118.
  • Котляр, Л.М. Моделирование электрохимического формообразования с использованием криволинейного электрода при ступенчатой зависимости выхода по току от его плотности / Л.М. Котляр, Н.М. Миназетдинов // Прикладная механика и теоретическая физика. - 2016. - Т. 44, № 1. - С. 146-155.
  • Guo, C. Electrochemical Machining with Scanning Micro Electrochemical Flow Cell / C. Guo, J. Qian, D. Reynaers // Journal of Materials Processing Technology. - 2017. - V. 24, № 7. - P. 171-183.
  • Волгин, В.М. Псевдонестационарный метод моделирования электрохимического формообразования / В.М. Волгин, А.Д. Давыдов // Электрохимия. - 2017. - Т. 53, № 10. - C. 1248-1265.
  • Guo, C. A Three-Dimensional FEM Model of Channel Machining by Scanning Micro Electrochemical Flow Cell and Jet Electrochemical Machining / C. Guo, J. Qian, D. Reynaers // Precision Engineering. - 2018. - V. 52. - P. 507-519.
  • Zhitnikov, V.P. Stationary Electrochemical Machining Simulation Applying to Precision Technologies / V.P. Zhitnikov, N.M. Sherykhalina, S.S. Porechny // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2017. - Т. 10, № 4. - P. 15-25.
  • Christiansen, S. Numerical Solutions for Two-Dimensional Annular Electrochemical Machining Problems / S. Christiansen, H. Rasmussen // Journal of the Institute of Mathematics and its Applications. - 1976. - № 18. - P. 295-307.
  • Kenney, J.A. Electrochemical Machining with Ultrashort Voltage Pulses: Modelling of Charging Dynamics and Feature Profile Evolution / J.A. Kenney, G.S. Hwang // Nanotechnology. - 2005. - V. 16, № 7. - P. 309-313.
  • Zhitnikov, V.P. Simulation of Non-Stationary Processes of Electrochemical Machining / V.P. Zhitnikov, G.I. Fedorova, O.V. Zinatullina, A.V. Kamashev // Journal of Materials Processing Technology. - 2004. - V. 149, № 1-3. - P. 398-403.
  • Zhitnikov, V.P. Numerical Investigation of Non-Stationary Electrochemical Shaping Based on an Analytical Solution of the Hele-Shaw Problem / V.P. Zhitnikov, G.I. Fedorova, N.M. Sherykhalina, A.R. Urakov // Journal of Engineering Mathematics. - 2006. - V. 55, № 1-4. - P. 255-276.
  • Volgin, V. M. Modelling of Wire Electrochemical Machining / V.M. Volgin, V.D. Do, A.D. Davydov // Chemical Engineering Transactions. - 2014. - V. 41. - P. 91-96.
  • Volgin, V.M. Effect of Current Efficiency on Electrochemical Micromachining by Moving Electrode / V.M. Volgin, V.V. Lyubimov, I.V. Gnidina, A.D. Davydov, T.B. Kabanova // Procedia CIRP. - 2016. - V. 55. - P. 65-70.
  • Chen, Y. Multiphysics Simulation of the Material Removal Process in Pulse Electrochemical Machining (PECM) / Y. Chen, M. Fang, L. Jiang // International Journal of Advanced Manufacturing Technology. - 2017. - V. 91, № 5-8. - P. 2455-2465.
  • Zhitnikov, V.P. Exact Solutions of Two Limiting Quasistationary Electrochemical Shaping Problems / V.P. Zhitnikov, E.M. Oshmarina, G.I. Fedorova // Russian Mathematics. - 2010. - V. 54, № 10. - P. 67-70.
  • Zhitnikov, V.P. The Use of Discontinuous Functions for Modeling the Dissolution Process of Steady-State Electrochemical Shaping / V.P. Zhitnikov, E.M. Oshmarina, G.I. Fedorova // Russian Mathematics. - 2011. - V. 55, № 12. - P. 16-22.
  • Лаврентьев, М.А. Методы теории функций комплексного переменного / М.А. Лаврентьев, Б.В. Шабат. - М.: Наука, 1987.
  • Henrici, P. Applied and computational complex analysis / P. Henrici. - New York: Wiley Classic Library, 1993.
  • Биркгоф, Г. Струи, следы и каверны / Г. Биркгоф, Э. Сарантонелло. - М.: Мир, 1964.
  • Zhitnikov, V.P. Problem of Reliability Justification of Computation Error Estimates / V.P. Zhitnikov, N.M. Sherykhalina, A.A. Sokolova // Mediterranean Journal of Social Sciences. - 2015. - V. 6, № 2. - P. 65-78.
  • Aitken, A.C. On Bernoulli's Numerical Solution of Algebraic Equations / A.C. Aitken // Proceedings of the Royal Society of Edinburgh. - 1926. - V. 46. - P. 289-305.
  • Richargson, L.F. The Deferred Approach to the Limit / L.F. Richargson, J.A. Gaunt // Philosophical Transactions of the Royal Society of London. - 1927. - V. 226. - P. 299-361.
  • Polubarinova-Kochina, P.Ya. Theory of Groundwater Movement / P.Ya. Polubarinova-Kochina. - Princeton: Princeton University Press, 1962.
Еще
Статья научная