Computer simulation of the Volga river hydrological regime: problem of water-retaining dam optimal location

Бесплатный доступ

We investigate of a special dam optimal location at the Volga river in the area of the Akhtuba left sleeve beginning (7 km to the south of the Volga Hydroelectric Power Station dam). We claim that a new water-retaining dam can resolve the key problem of the Volga-Akhtuba floodplain related to insufficient water amount during spring floodings due to the overregulation of the Lower Volga. Using a numerical integration of Saint-Vanant equations we study the water dynamics across the northern part of the Volga-Akhtuba floodplain taking into account its actual topography. As the result we found an amount of water VA passing to the Akhtuba during spring period for a given water flow through the Volga Hydroelectric Power Station (so-called hydrograph which characterises the water flow per unit of time). By varying the location of the water-retaining dam xd,yd we obtained various values of VA(xd,yd) as well as various flow spatial structure on the territory during the flood period. Gradient descent method provides the dam coordinated with the maximum value of VA. Such approach to the dam location choice let us find the best solution, that the value VA increases by a factor of 2. Our analysis demonstrates a good potential of the numerical simulations in the field of hydraulic works.

Еще

Hydrodynamic simulation, saint-venant equations, numerical model, optimization, hydrology

Короткий адрес: https://sciup.org/147159436

IDR: 147159436   |   DOI: 10.14529/mmp170313

Список литературы Computer simulation of the Volga river hydrological regime: problem of water-retaining dam optimal location

  • Khrapov, S. The Numerical Simulation of Shallow Water: Estimation of the Roughness Coefficient on the Flood Stage/S. Khrapov, A. Pisarev, I. Kobelev, A. Zhumaliev, E. Agafonnikova, A. Losev, A. Khoperskov//Advances in Mechanical Engineering. -2013. -V. 5. -P. 1-11.
  • Middelkoop, H. Post-Dam Channel and Floodplain Adjustment Along the Lower Volga River, Russia/H. Middelkoop, A.M. Alabyan, D.B. Babich, V.V. Ivanov//Geomorphic Approaches to Integrated Floodplain Management of Lowland Fluvial Systems in North America and Europe. -2015. -P. 245-264.
  • Ladjel, M. Lamination Method of Flood Wadis and Projection of the Laminated Flood Hydrograph/M. Ladjel//Journal of Fundamental and Applied Sciences. -2016. -V. 8, № 1. -P. 83-91.
  • Gorski, K. Post-Damming Flow Regime Development in a Large Lowland River (Volga, Russian Federation): Implications for Floodplain Inundation and Fisheries/K. Gorski, L.V. van den Bosch, K.E. van de Wolfshaar et al.//River Research and Applications. -2012. -V. 28, № 8. -P. 1121-1134.
  • Задача управления гидрологическим режимом в эколого-экономической системе Волжская ГЭС -Волго-Ахтубинская пойма. Ч. 2. Моделирование динамики поверхностных вод в период весеннего паводка/А.А. Воронин, М.В. Елисеева, С.С. Храпов, А.В. Писарев, А.В. Хоперсков//Проблемы управления. -2012. -Т. 5, № 6. -С. 19-25.
  • Chen, D. Deriving Optimal Daily Reservoir Operation Scheme with Consideration of Downstream Ecological Hydrograph Through a Time-Nested Approach/D. Chen, R. Li, Q. Chen, D. Cai//Water Resources Management. -2015. -V. 29, № 9. -P. 3371-3386.
  • Haghighi, A.T. Development of Monthly Optimal Flow Regimes for Allocated Environmental Flow Considering Natural Flow Regimes and Several Surface Water Protection Targets/A.T. Haghighi, B. Kløve//Ecological Engineering. -2015. -V. 82. -P. 390-399.
  • Borsche, R. Flooding in Urban Drainage Systems: Coupling Hyperbolic Conservation Laws for Sewer Systems and Surface Flow/R. Borsche, A. Klar//International Journal for Numerical Methods in Fluids. -2014. -V. 76. -P. 789-810.
  • Воронин, А.А. Проектирование механизмов управления гидрологическим режимом Волго-Ахтубинской поймы на основе геоинформационного и гидродинамического моделирования/А.А. Воронин, А.А. Васильченко, А.В. Писарев, С.С. Храпов, Ю.Е. Радченко//Вестник Волгоградского государственного университета. Серия 1: Математика. Физика. -2016. -№ 1 (32). -С. 24-37.
  • Izem, N. A Discontinuous Galerkin Method for Two-Layer Shallow Water Equations/N. Izem, M. Seaid, M. Wakrim//Mathematics and Computers in Simulation. -2016. -V. 120. -P. 12-23.
  • Bulatov, O.V. Regularized Shallow Water Equations for Numerical Simulation of Flows with a Moving Shoreline/O.V. Bulatov, T.G. Elizarova//Computational Mathematics and Mathematical Physics. -2016. -V. 56, № 4. -P. 661-679.
  • D'yakonova, T.A. Numerical Model of Shallow Water: the Use of GPUs NVIDIA CUDA/T.A. D'yakonova, A.V. Khoperskov, S.S. Khrapov//Communications in Computer and Information Science. -2017. -V. 687. -P. 132-145
  • Храпов, С.С. Численная схема для моделирования динамики поверхностных вод на основе комбинированного SPH-TVD подхода/С.С. Храпов, А.В. Хоперсков, Н.М. Кузьмин, А.В. Писарев, И.А. Кобелев//Вычислительные методы и программирование. -2011. -Т. 12, № 2. -С. 282-297.
  • Храпов, С.С. Сравнение точности и сходимости для метода CSPH -TVD и некоторых эйлеровых схем для решения уравнения газодинамики/С.С. Храпов, Н.М. Кузьмин, М.А. Бутенко//Вестник Волгоградского государственного университета. Серия 1. Математика. Физика. -2016. -№ 6 (37). -С. 166-173.
  • Дьяконова, Т.А. Проблема граничных условий для уравнений мелкой воды/Т.А. Дьяконова, С.С. Храпов, А.В. Хоперсков//Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. -2016, -Т. 26, № 3. -С. 401-417.
Еще
Краткое сообщение