Conformal cyclic phantom energy dominated cosmological scenario from loop quantum cosmology

Бесплатный доступ

Phantom energy dominated final stages of the universe is analyzed with the conformal cyclic scenario. Quantum cosmological implementation on conformal cyclic cosmology is attempted in this work. The conformal emergence of the quantum cosmological scenario is discussed. It is shown that the classical universe will not be completely ripped off at phantom dominated final stages. Further extension of evolution through conformal cyclic evolution is predicted. This article is intended to connect loop quantum formalism with conformal cyclic cosmological formalism.

Loop quantum gravity, conformal cyclic cosmology, phantom energy, big rip cosmology

Короткий адрес: https://sciup.org/149140100

IDR: 149140100

Список литературы Conformal cyclic phantom energy dominated cosmological scenario from loop quantum cosmology

  • Alonso-Serrano A., Bouhmadi-Lopez M., Martín-Moruno P. f(R) Quantum Cosmology: Avoiding the Big Rip. Physical Review D, 2018, vol. 98, iss. 10, article ID: 104004. DOI: https://doi.org/10.1103/PhysRevD.98.104004.
  • An D., Meissner K.A., Nurowski P., Penrose R. Apparent Evidence for Hawking Points in the CMB Sky. Monthly Notices of the Royal Astronomical Society, 2020, vol. 495, no. 3, pp. 3403-3408.
  • Ashtekar A., Bianchi E. A Short Review of Loop Quantum Gravity. Reports on Progress in Physics, 2021, vol. 84, no. 4, article ID: 042001.
  • Bojowald M. Loop Quantum Cosmology. Living Reviews in Relativity, 2008, vol. 11, no. 1, pp. 1-131.
  • Caldwell R.R., Kamionkowski M., Weinberg N.N. Phantom Energy: Dark Energy with w < —1 Causes a Cosmic Doomsday. Physical Review Letters, 2003, vol. 91, no. 7, article ID: 071301.
  • Chakraborty S., Kothawala D., Pesci A. Raychaudhuri Equation with Zero Point Length. Physics Letters B, 2019, vol. 797, article ID: 134877. DOI: https://doi.org/10.1016/j-.physletb.2019.134877.
  • Ebrova I.,'Lokas E.L., Eliasek J. Galaxies with Kinematically Distinct Cores in Illustris. Astronomy & Astrophysics, 2021, vol. 647, article ID: A103.
  • Khoury J., Ovrut B.A., Steinhardt P.J., Turok N. Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang. Physical Review D, 2001, vol. 64, no. 12, article ID: 123522.
  • Limber D.N. The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. The Astrophysical Journal, 1953, vol. 117, pp. 134-144. DOI: https://doi.org/10.1086/145672.
  • Maartens R., Koyama K. Brane-World Gravity. Living Reviews in Relativity, 2010, vol. 13, no. 1, article ID: 5. DOI: https://doi.org/10.12942/lrr-2004-7.
  • McInnes B. The dS/CFT Correspondence and the Big Smash. Journal of High Energy Physics, 2002, vol. 2002, no. 08, article ID: 029. DOI: https://doi.org/10.1088/1126-6708/2002/08/029.
  • Natarajan S., Chandramohan R. Conformal Evolution of Phantom Dominated Final Stages of the Universe in Higher Dimensions. Canadian Journal of Physics, 2021, vol. 99, no. 1, pp. 1-9. DOI: https://doi.org/10.1139/cjp-2019-0626.
  • Natarajan S., Chandramohan R., Swaminathan R. Conformai Cyclic Evolution of Phantom Energy Dominated Universe. Revista Mexicana de Fisica, 2020, vol. 66, no. 2, pp. 209-223. DOI: https://doi.org/10.31349/RevMexFis.66.209.
  • Nelson D., Pillepich A., Genel S., Vogelsberger M., Springel V., Torrey P., Rodriguez-Gomez V., Sijacki D., Snyder G.F., Griffen B., Marinacci F., Blecha L., Sales L., Xu D., Hernquist L. The Illustris Simulation: Public Data Release. Astronomy and Computing, 2015, vol. 13, pp. 12-37. DOI: https://doi.org/10.1016/j-.ascom.2015.09.003.
  • Nelson W., Wilson-Ewing E. Pre-Big-Bang Cosmology and Circles in the Cosmic Microwave Background. Physical Review D, 2011, vol. 84, no. 4, article ID: 043508.
  • Nurowski P. Poincare-Einstein Approach to Penrose's Conformal Cyclic Cosmology. Classical and Quantum Gravity, 2021, vol. 38, no. 14, article ID: 145004. DOI: https://doi.org/10.1088/1361-6382/ac0237.
  • Penrose R. The Basic Ideas of Conformal Cyclic Cosmology. AIP Conference Proceedings. Melville, AIP Publishing, 2012, vol. 1446, iss. 1, pp. 233-243. DOI: https://doi.org/10.1063/L4727997.
  • Rovelli C., Vidotto F. Pre-Big-Bang Black-Hole Remnants and Past Low entropy. Universe, 2018, vol. 4, no. 11, article ID: 129. DOI: https://doi.org/10.3390/universe4110129.
  • Shi J., Wu J.-P. Dynamics of k-Essence in Loop Quantum Cosmology. Chinese Physics C, 2021, vol. 45, no. 4, article ID: 045104.
  • Shriethar N., Rathinam C. Conformal Cyclic Evolution of the Universe: A Loop Quantum Gravity Perspective. International Journal of Theoretical Physics, 2020, vol. 59, no. 12, pp. 3995-4012. DOI: 10.1007/s10773-020-04651-6.
  • Singh P. Loop Quantum Cosmology and the Fate of Cosmological Singularities. Bulletin of the Astronomical Society of India, 2014, vol. 42, pp. 121-146.
  • Steinhardt P.J., Turok N. Cosmic Evolution in a Cyclic Universe. Physical Review D, 2002, vol. 65, no. 12, article ID: 126003. DOI: https://doi.org/10.1103/PhysRevD.65.126003.
  • Steinhardt P.J., Turok N. A Cyclic Model of the Universe. Science, 2002, vol. 296, no. 5572, pp. 1436-1439.
  • Tod P. The Equations of Conformal Cyclic Cosmology. General Relativity and Gravitation, 2015, vol. 47, no. 3, article ID: 17. DOI: https://doi.org/10.1007/s10714-015-1859-7.
  • Turner M.S. Dark Energy and the New Cosmology. arXiv preprint. URL: https://arxiv.org/abs/astro-ph/0108103.
  • Vilenkin A. Creation of Universes from Nothing. Physics Letters B, 1982, vol. 117, no. 1-2, pp. 25-28.
  • Vogelsberger M., Genel S., Springel V., Torrey P., Sijacki D., Xu D., Snyder G., Bird S., Nelson D., Hernquist L. Properties of Galaxies Reproduced by a Hydrodynamic Simulation. Nature, 2014, vol. 509, no. 7499, pp. 177-182.
  • Vogelsberger M., Genel S., Springel V., Torrey P., Sijacki D., Xu D., Snyder G., Nelson D., Hernquist L. Introducing the Illustris Project: Simulating the Coevolution of Dark and Visible Matter in the Universe. Monthly Notices of the Royal Astronomical Society, 2014, vol. 444, no. 2, pp. 1518-1547.
  • Wang Y., Liu X., Zhu W., Tang L., Lin W. Estimation of the Galaxy Quenching Rate in the Illustris Simulation. The Astrophysical Journal, 2021, vol. 906, no. 2, article ID: 129. DOI: https://doi.org/10.3847/1538-4357/abcc66.
Еще
Статья научная