Conformal Ricci soliton in an indefinite trans-Sasakian manifold

Автор: Girish Babu Shivanna, Reddy Polaepalli Siva Kota, Somashekhara Ganganna

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.23, 2021 года.

Бесплатный доступ

Conformal Ricci solitons are self similar solutions of the conformal Ricci flow equation. A new class of n-dimensional almost contact manifold namely trans-Sasakian manifold was introduced by Oubina in 1985 and further study about the local structures of trans-Sasakian manifolds was carried by several authors. As a natural generalization of both Sasakian and Kenmotsu manifolds, the notion of trans-Sasakian manifolds, which are closely related to the locally conformal Kahler manifolds introduced by Oubina. This paper deals with the study of conformal Ricci solitons within the framework of indefinite trans-Sasakian manifold. Further, we investigate the certain curvature tensor on indefinite trans-Sasakian manifold. Also, we have proved some important results.

Еще

Indefinite trans-sasakian manifold, trans-sasakian manifold, ricci flow, conformal ricci flow

Короткий адрес: https://sciup.org/143177809

IDR: 143177809   |   DOI: 10.46698/t3715-2700-6661-v

Текст научной статьи Conformal Ricci soliton in an indefinite trans-Sasakian manifold

In 1982 Hamilton [3] discovered that the Ricci solitons move under the Ricci flow simply by diffeomorphisms of the initial metric; that is, they are stationary points of the Ricci flow given by

= -28. ∂t

(1.1)

In 2004 Fischer [4] introduced the concept of conformal Ricci flow which is a variation of the classical Ricci flow equation. In Ricci flow equation the unit volume constraint plays a important role but in conformal Ricci flow equation scalar curvature r is considered as constraint.

dg + 2 (S + g) = -pg, ∂t          n

(1.2)

where p is a scalar non-dynamical field and n is the dimension of the manifold.

In the year 2015, Basu and Bhattacharyya [1] introduced the notion of conformal Ricci soliton equation as:

L v g + 2S = 2A

-

(p+1).

g.

(1.3)

In 1985 J. A. Oubina [5] introduced a new class of almost contact manifold namely trans-Sasakian manifold.

(c) 2021 Girish Babu, S., Reddy, P. S. K. and Somashekhara, G.

2.    Preliminaries

A smooth manifold (M n , g) is said to be indefinite almost contact metric manifold, if there exists a a (1,1) tensor field y , structure vector field e , a 1-form n and an indefinite metric g such that (see [2]):

y2Xi = —Xi + n(Xi)e, ye = 0, n(yXi) = 0, n(0 = 1, g^) = e, (2.1) n(Xi)= eg(e,Xi), g(y(Xi),y(Yi)) = g(Xi,Yi) — en(Xi)n(Yi),(2.2)

g(yXi,Yi) = —g(Xi,yYi), g(yXi,Xi) =0,(2.3)

for all vector fields X i , Y i on manifold M , where e = ± 1 accordingly as £ is space like vector field and rank y is n 1 .

If dn(Xi ,Yi) = g(Xi,yY),(2.4)

then M n (y,£,,n, g) is called an indefinite contact metric manifold.

Indefinite almost contact metric manifold is called an indefinite trans-Sasakian manifold if it is of the form

Vxi yY = a(g(Xi,Yi)^ — en(Yi)Xi) + в(g(yX1 , Yi)e — en(Yi)yXi),(2.5)

for any X i Y i G Г(Т M ) , where V is a metric connention of indefinite metric g , a and в are smooth function on a manifold M n .

On using (2.1), (2.2), (2.3), (2.4) and (2.5), we get

Vxi£ = e [—ayXi + в№ - nXi)<\ ,(2.6)

(Vxin) Yi = —ag(yXi,Yi) + в[g(X1,Y1) — en(Xi)n(Yi)].(2.7)

The indefinite trans-Sasakian manifold M n , the following relation holds:

R(Xi,Yi)e = (a2 — в2) (n(Yi)Xi — n(Xi)Yi) + 2ав (n(Yi)yXi — n(Xi)y(Yi))8)

+ e ((Yia)yXi — (Xia)yYi + (Y1в)y2X1 — (X1в)y2Y1) ,

R«, Yi)Zi = (a2 — в2) (eg(Yi, Zi)e — n(Zi)Yi) + 2ав (eg(yYi, yZi)e + n(Zi)yYi)9)

+ e(Z i a)yY i + eg(Y i , yZ i )(grada) eg(yY i , yZ i )(gradв) + e(Z^) (Y i n(Z i )£),

S(Z i , e) = ((n 1)(a 2 в 2 ) е^в)) n(Z i ) e(n 2)(Z i e),          (2.10)

S (e, e) = (n 1)(a 2 в 2 ) e(n 1)(ев),                     (2.11)

Qe = e(n 1)(a 2 в 2 (ев)е + ey(grada) e(n 2)(grad в),       (2.12)

where R is the Riemannian curvature tensor, S is the Ricci tensor and Q is the Ricci operator. Then we have that S(X i , Y i ) = g(QX i , Y i ) ( V X i , Y i G r(TM)).

Now from equation 1.3, we have

S (X i ,Y i ) = A i g(X i ,Y i )+ A 2 n(X i )n(Y i ),                   (2.13)

where A i = 2 (2A (p + П ) ев) , A 2 = ев

QX i = A i X i + A 2 n(X i )e,                         (2.14)

S (X i ,e) = A 4 n(X i ),                                 (2.15)

where A 4 = (eA i + A 2 )

Qe = A 3 e,

(2.16)

where A 3 = A i + A 2 .

3.    Conformal Ricci Soliton in an Indefinite Trans-SasakianManifold Satisfying R(^,X1 ).C = 0

Let a n -dimensional conformal Ricci soliton in an indefinite trans-Sasakian manifold satisfying R(^,X i ).C = 0 , where C is quasi conformal curvature tensor on a manifold M and is defined by

C(X 1 ,Y 1 )Z 1 = aR(X i ,Y i )Z i + b(S (Y i , Z i )X i S (X i , Z i )Y i + g(Y i , Z i )QX i

— g(Xi, Zi)QYi) — (7—тугf —+ 2b) (g(Yi, Zi)Xi — g(Xi, Z^Yi), \2n + 1 / \2n / where r is scalar curvature.

Substituting Z i = £ , we get

C (X 1 ,Y1K = aR(X i ,Y i )e + b(S(Y i ,C)X i S(X i , ОТ + g(Y i ,0QX i

— g(X i ,^)QY i ) — () f + 2b) (g(Y i , № — g(X i , №)• \ 2 iL + 1 у \ 2 n      /

Using equation (2.2), (2.8), (2.13) and (2.14) in (3.2), we get

C (X i ,Y i )e = A 5 (n(Y i )X i n(X i )Y i ),                       (3.3)

where A 5 = (a(a 2 в 2 ) + bA 4 + ЬеА 1 e equation (3.3) becomes

2п+т) ( 2n + 2b/) . Taking inner product with Z i

—n(C (X 1 ,Y 1 ),Z 1 )= A 5 E (n(Y i )g(X i ,Z 1 ) n(X i )g(Y i ,Z 1 )).           (3.4)

We assume that R(^,X i ).C = 0 , which implies that

R(e,Xi)(C (Yi,Zi)Z2) — C (R(^,Xi)Yi,Zi)Z2 — C (Yi ,R(e,Xi )Z1)Z2 — C (Y1,Z1 )R(^,X1 )Z2 = 0, for all vector fields X1 , Y1 , Z1 , Z2 on a manifold M .

Putting Z 2 = ^ and using (2.9) in (3.5), we get

E(a 2 e 2 )g(X i , CC(Y 1 , Z 1 )^)^ E(a 2 e 2 )g(X i , Y i )C(e, Zi)C + (a 2 в 2 )n(Y i )C(X i , Z i )€ e(a2 e 2 )g(X i ,Z i )C(Y i ,0^ + (a 2 e 2 )n(Z i )C(Y i , Z i )€ (a 2 в 2 )п(Х 1 )C(Y i , Zi)^ + (a 2 e 2 )(5(Y i ,Z i )X i = 0,

Taking inner product with ξ and using (2.2), (3.3), equation (3.6) reduces to

g(X i , C(Y i , Z i X) + n(C (Y i , Z i )X i ) = 0,                       (3.7)

provided (a 2 в 2 ) = 0.

Substituting Z i = ^ and using (3.3) in (3.7), we obtain

(3.8)

A 5 g(X i , Y i ) A5^n(X i )n(Y) + n(C (Y i ,^)X i ) = 0.

Again substituting Y i — £ in (3.1), we get

C (X i ,^)Z i aR(X i ,OZ i + b(S(£, Z i )X i S(X i , Z i )£ + g«, Z i )QX i

g(X i , ZJQC) f5 tt^ (9—+ 2b)(g(^’ Z i )X i g(X i ’ Z i D, 2n + 1   2n

Taking inner product with ξ and using (2.1), (2.2), (2.9), (2.10), (2.11), (2.12), equation (3.9) reduces to

(3.10)

n(C(Xi,e)Zi) — Абд(Х1, Zi) + A7n(Xi)n(Zi) — bS(Xi, Zi), where

А б — ^—Еа(а 2 в 2 ) - Ье ( А 1 + А 2 ) + А 7 — ^а(а 2 в 2 ) + Ье ( А 1 + A 3 + А 4 )

(  .+D),

replacing X 1 with Y 1 and Z 1 with X 1 in (3.10), we obtain

n(C(Y i ,№) — А б д(Х 1 ,Y i ) + A 7 n(X i )n(Y i ) bS(X i ,Y i ).

  • (3.11)

Substituting (3.11) in (3.8), we get

S (X 1 ,Y 1 ) = A 8 g(X i ,Y 1 ) + A 9 n(X i )n(Y i ),

  • (3.12)

  • 4. Conformal Ricci Soliton in an Indefinite Trans-Sasakian

    Manifold Satisfying R(^,X i ).S — 0

where A 8 — A 5 + А б , A 9 — A 7 ЕА 5 .

Hence we can state the following theorem

Theorem 3.1. A conformal Ricci soliton in an indefinite trans-Sasakian manifold satis fying R(£,X i )C — 0 is an п-Einstein manifold.

Leta a n -dimensional conformal Ricci soliton in an indefinite trans-Sasakian manifold satisfying R(£, X i ).S — 0 , which implies that

S (R(e,X i )Y i ,Z i ) + S(Y i ,R(^,X i )Z i ) — 0.

Using (2.1), (2.2), (2.9) and (2.13) in (4.1), we get

A i ((a 2 e 2 )Eg(X i , Y i )n(Z i ) (a 2 в2')п(У 1 )д(х 1 , Z i )) + A i ((a 2 e 2 )Eg(X i , Z i )n(Y i ) (a 2 e 2 )n(Z i )g(X i , YD) + A 2 (a 2 e 2 )(g(X i ,Y i )n(Z i ) En(X i )n(Y i )n(Z i ) + g(X i .ZiMY i ) En(X i )n(Y i )n(Z i )) — 0.

Substituting Z i — ^ and using (2.1), (2.2) in (4.2), we get

g(Xi,Yi) — Еn(Xi)n(Yi), provided A2(a2 — в2) — 0.

Hence, we state the following theorem

Theorem 4.1. A conformal Ricci soliton in an indefinite trans-Sasakian manifold satisfying R«,X i )S — 0, then g(X i , Y i ) — En(X i )n(Y i ).

(4.1)

  • (4.2)

  • (4.3)

  • 5. Conformal Ricci Soliton in an Indefinite Trans-Sasakian

    Manifold Satisfying R(£, X i ).P = 0

Let a n -dimensional conformal Ricci soliton in an indefinite trans-Sasakian manifold satisfying R(^, X i ).P = 0 , where P is projective curvature tensor on a manifold M and is defined by

P (X i ,Y i )Z i = R(X i ,Y i )Z i - ^(S(Y i ,Z i )X i - S (X i ,Z i )Y i ) . 2n

  • (5.1)

We assume that R(£,X i ).P = 0 , which implies that

-

R(e,X i )(P(Y i ,Z i )Z 2 ) - P (R(£,X i )Y i ,Z i )Z 2

P(Y i , R(£, X i )Z i )Z 2 - P (Y i ,Z i )R(£,X i )Z 2 = 0,

  • (5.2)

for all vector fields X 1 , Y 1 , Z 1 and Z 2 on M .

Putting Z i = £ and using equation (2.9) in (5.2), we get

Eg(X i ,P (Y i ,C)Z 2 - n((P (Y i ,£)Z 2 )X i ) - i ,Y )P (£,№ + n(Y )P (X i ,£ )Z 2 - en(X i )P(Y i ,C)Z 2 + P (Y i ,X i )Z 2 - eg(X i ,Z 2 )P(Y i ,^)^ + n(Z 2 )P(Y i ,^)X i = 0.

  • (5.3)

Substituting Y i = £ in equation (5.1), we get

P (X i ,e)Z i = R(X i ,^)Z i - ^(S(^,Z i )X i - S(X i ,Z i )e), 2n

  • (5.4)

using equation (2.9) and (2.15) in (5.4), we get

P(X i ,0Z i = - e(a 2 - e 2 )g(X i ,Z i )€

+ ((a 2 - e 2 )

-

-A4-) n(Z i )X i + - n - 1           n

-

1 S (X i ,Z i )£.

(5.5)

Replacing X 1 with Y 1 and Z 1 with Z 2 in (5.5), we get

P(Y i ,C)Z 2 = - e(a 2 - e 2 )g(Y i ,Z 2 )e

+ ((a 2 - e 2 )

-

-A4-) n(Z 2 )Y i + - n - 1           n

-

1 S (Y i ,Z 2 )^.

(5.6)

Now substituting Z 2 = £ and using (5.6) in (5.3), we get

4^47) g(X i ,Y i X + An(Y i )X i - A 4 n(X i )Y i + у n 1/            2n          2n

S(X i ,Y i )£ = 0. n - 1

(5.7)

Taking inner product with ξ and using (2.1), (2.2), equation (5.7) becomes

S (X i ,Y i ) = - A io g(X i ,Y i ),                             (5.8)

where A io = EA 4 Hence we can state the following theorem

Theorem 5.1. A conformal Ricci soliton in an indefinite trans-Sasakian manifold satis fying R(£,X i )P = 0 is an Einstein manifold.

6. Conformal Ricci Soliton in an Indefinite Trans-SasakianManifold Satisfying R(^,X1 )P = 0

Let a n -dimensional conformal Ricci soliton in an indefinite trans-Sasakian manifold

.“^

satisfying R(^,X i )P = 0 , where P is pseudo projective curvature tensor on a manifold M and is defined by

P(X i ,Y i )Z i = aR(X i ,Y i )Z i + b(S(Y i ,Z i )X i - S(X i ,Z i )Y i )

- r ) (g(Y i ,Z 1 )X 1 - g(X i ’Z i )Y i ).

n n - 1

We assume that R(^,X i )P = 0 , which implies that

(6.1)

-

^^

^^

R(^X i )(P ( Y i ,Z i ) Z 2 ) - P (R(^,X i )Y i ,Z i )Z 2

^^

^^

P (Y i ,R(^,X i )Z 1 )Z 2 - P (Y i ,Z i )RU,X i )Z 2 = 0,

(6.2)

for all vector field X 1 , Y 1 , Z 1 and Z 2 on M .

Putting Z 2 = ^ and using (2.9) in (6.2), we get

A ii g(X i , Y i )Z i + A i2 g(X i , Z i )Y i + P (Y i , Z i )X i = 0, provided (a 2 в 2 ) = 0 and where

(6.3)

A ii = ^aE + bA4E^~

a

-

1+ b))’ A 12 = (aE bA 4 E + Г(п

a

-

1+b))-

Substituting Z i = £ in (6.3), we get

A ii g(X i , Y i К + A i2 g(X i , £) Y i + P (Y i ,<)X i = 0.

Taking inner product with ξ and using (2.1), (2.2), equation (6.4) becomes

A i4 g(X i ,Y i ) + A i3 n(X i )n(Y i ) + n(P (Y i ,^)X i ) = 0, where A 13 = EA 12 ,  A 14 = еАц. In the view of (6.1) and (6.5) we have

S (X i , Y i ) = A i5 g(X i , Y i ) + A i6 n(X i )n(Y i ),

(6.4)

(6.5)

(6.6)

where

A 11

A 15 =  ---

-

a(a 2 - в 2) •

-

ε r n

,

A 16 =

A13 + aE(a2 - в2) + bA4E + n bε

Hence we can state the following theorem

Theorem 6.1. A conformal Ricci soliton in an indefinite trans-Sasakian manifold satis fying R(^,X i )P = 0 is an п-Einstein manifold.

Acknowledgment. The authors would like to thank the anonymous referee for his comments that helped us improve this article.

Список литературы Conformal Ricci soliton in an indefinite trans-Sasakian manifold

  • Basu, N. and Bhattacharyya, A. Conformal Ricci Soliton in Kenmotsu Manifold, Glob. J. Adv. Res. Class. Mod. Geom., 2015, vol. 4, no. 1, pp. 15-21.
  • Blair, D. E. Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer Verlag, 1976.
  • Hamilton, R. S. The Ricci Flow on Surfaces, Mathematics and General Relativity, Santa Cruz, CA, 1986, pp. 237-262. Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
  • Fischer, A. E. An Intorduction to Conformal Ricci Flow, Class. Quantum Grav., 2004, vol. 21, pp. S171-S218.
  • Oubina, J. A. New Classes of Almost Contact Metric Structures, Publ. Math. Debrecen, 1985, vol. 32, pp. 187-193.
Статья научная