Conformal Ricci soliton in an indefinite trans-Sasakian manifold
Автор: Girish Babu Shivanna, Reddy Polaepalli Siva Kota, Somashekhara Ganganna
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 3 т.23, 2021 года.
Бесплатный доступ
Conformal Ricci solitons are self similar solutions of the conformal Ricci flow equation. A new class of n-dimensional almost contact manifold namely trans-Sasakian manifold was introduced by Oubina in 1985 and further study about the local structures of trans-Sasakian manifolds was carried by several authors. As a natural generalization of both Sasakian and Kenmotsu manifolds, the notion of trans-Sasakian manifolds, which are closely related to the locally conformal Kahler manifolds introduced by Oubina. This paper deals with the study of conformal Ricci solitons within the framework of indefinite trans-Sasakian manifold. Further, we investigate the certain curvature tensor on indefinite trans-Sasakian manifold. Also, we have proved some important results.
Indefinite trans-sasakian manifold, trans-sasakian manifold, ricci flow, conformal ricci flow
Короткий адрес: https://sciup.org/143177809
IDR: 143177809 | DOI: 10.46698/t3715-2700-6661-v
Список литературы Conformal Ricci soliton in an indefinite trans-Sasakian manifold
- Basu, N. and Bhattacharyya, A. Conformal Ricci Soliton in Kenmotsu Manifold, Glob. J. Adv. Res. Class. Mod. Geom., 2015, vol. 4, no. 1, pp. 15-21.
- Blair, D. E. Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer Verlag, 1976.
- Hamilton, R. S. The Ricci Flow on Surfaces, Mathematics and General Relativity, Santa Cruz, CA, 1986, pp. 237-262. Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
- Fischer, A. E. An Intorduction to Conformal Ricci Flow, Class. Quantum Grav., 2004, vol. 21, pp. S171-S218.
- Oubina, J. A. New Classes of Almost Contact Metric Structures, Publ. Math. Debrecen, 1985, vol. 32, pp. 187-193.