Construction of high-precision low-dimensional MgFE using local approximations and generating FE
Автор: Matveev A.D.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 3 vol.23, 2022 года.
Бесплатный доступ
Composite structures (bodies), in particular, plates, beams, shells, are widely used in aviation and rocket and space technology. To analyze the stress state of elastic composite bodies (CB), the method of multigrid finite elements (MMFE) is effectively used, which is implemented on the basis of the Lagrange functional (in displacements). When constructing a multigrid finite element (MgFE), briefly a standard MgFE, using known procedures, a small base grid is used, which can be arbitrarily small, and large ones nested in a small one. The fine grid is generated by the partition of the MgFE, which takes into account its inhomogeneous, micro-inhomogeneous structure within the framework of the micro-passage. Large grids are used to reduce the dimension of the MgFE. The following is typical for a standard MgFE. Any large grid of a standard MgFE and corresponding approximations of displacements are determined on its entire region. This leads to an increase in the dimension of the standard MgFE with an increase in its order of accuracy, since in this case approximations of high-order displacements are determined on large grids. To reduce the error of solutions, high-precision MgFE are used, i. e., of a high order of accuracy, which have a large dimension. However, the use of high-precision MgFE is difficult, since they form discrete models of high-dimensional bodies. In this paper, we propose a method of local approximations (MLA) for constructing high-current MgFE of small dimension (short - small-sized MgFE), which are used to calculate elastic homogeneous and CB by MgFE. Two types of small-sized MgFE are considered. Small-sized MgFE of the 1st type are designed on the basis of standard ones with the use of local approximations of displacements, which are determined on the subdomains of standard MgFE, of the 2nd type - with the use of finite element generators (FE). The brief essence of the construction of small-sized MgFE of the 1st type is as follows. According to the MLA, we define a smaller Н grid on the V0 region of the standard MgFE than its base one. The V0 region is represented by the boundary and inner regions. The boundary (inner) regions have a common boundary, which does not degenerate into a point (do not have a common boundary), with the V0 region. On the boundary (inner) regions, we define large grids that are embedded in a small Н grid and generate local approximations of small (high) order displacements. On the V0 region, using local approximations of the displacements of the boundary and inner regions, we construct the MgFE. Then, using the condensation method, we express the movements of the internal nodes of the MgFE through the movements of the nodes lying on its boundary, i.e. on the boundary of the V0 region. As a result, we obtain a high-precision Vp MgFE of small dimension, i.e. a small-sized MgFE of the 1st type, the dimension of which is equal to the dimension of the standard one. It is important to note that with an increase in the order of accuracy of the Vp MgFE, its dimension does not change, i.e. it does not increase, and therefore it is called a highprecision MgFE of small dimension, i.e. small-sized. The procedure for constructing small-sized MgFE of the 1st type is described in detail. As is known, the calculation of the static strength of structures is reduced to determining the maximum equivalent stresses for them, the determination of which with a small error for CB is an urgent problem. Calculations show that small-sized MgFE of the 1st type generate maximum equivalent stresses in CB, the errors of which are 25 50 smaller than the errors of analogous stresses obtained using standard ones, on the basis of which small-sized, i.e. small-sized MgFE of the 1st type are more effective than standard ones. The use of small-sized MgFE of the 1st type in MMFE calculations makes it possible to determine the maximum equivalent stresses with a small error for large CB partitions. The construction of small-sized MgFE of the 2nd type is shown, which are designed on the basis of standard high-precision MgFE with the use of generating FE. A small-sized MgFE of the 2nd type has the same order of accuracy as the standard one, but its dimension is smaller than the dimension of the standard one. The advantage of small-sized MgFE of the 2nd type is that they give rise to discrete CB models of smaller dimension than standard ones.
Elasticity, composites, standard and small-sized MgFE, local approximations, generating FE
Короткий адрес: https://sciup.org/148329635
IDR: 148329635 | DOI: 10.31772/2712-8970-2022-23-3-372-390
Список литературы Construction of high-precision low-dimensional MgFE using local approximations and generating FE
- Zienkiewicz O. C., Taylor R. L., Zhu J. Z. The finite element method: its basis and fundamentals. Oxford: Elsevier Butterworth-Heinemann, 2013, 715 p.
- Golovanov A. I., Tiuleneva O. I., Shigabutdinov A. F. Metod konechnykh elementov v statike I dinamike tonkostennykh konstruktsii [Finite element method in statics and dynamics of thin-walled structures]. Moscow, Fizmatlit Publ., 2006, 392 p.
- Bate K., Vilson E. Chislennye metody analiza i metod konechnykh elementov [Numerical analysis methods and finite element method]. Moscow, Stroiizdat Publ., 1982, 448 p.
- Obraztsov I. F., Savel'ev L. M., Khazanov Kh. S. Metod konechnykh elementov v zadachakh stroitel'noi mekhaniki letatel'nykh apparatov [Finite element method in problems of aircraft structural mechanics]. Moscow, Vysshaia shkola Publ., 1985, 392 p.
- Sekulovich M. Metod konechnykh elementov [Finite element method]. Moscow, Stroiizdat Publ., 1993, 664 p.
- Norri D., de Friz Zh. Vvedenie v metod konechnykh elementov [Introduction to the finite element method]. Moscow, Mir Publ., 1981, 304 p.
- Zenkevich O. Metod konechnykh elementov v tekhnike [Finite element method in engineering]. Moscow, Mir Publ., 1975, 544 p.
- Fudzii T., Dzako M. Mekhanika razrusheniya kompozicionnyh materialov [Fracture mechanics of composite materials]. Moscow, Mir Publ., 1982, 232 p.
- Matveev A. D. [The method of multigrid finite elements in the calculations of threedimensional homogeneous and composite bodies]. Uchen. zap. Kazan. un-ta. Seriia: Fiz.- matem. Nauki. 2016, Vol. 158, No. 4, P. 530–543 (In Russ.).
- Matveev A. D. Multigrid finite element method in stress of three-dimensional elastic bodies of heterogeneous structure. IOP Conf, Ser.: Mater. Sci. Eng. 2016, Vol. 158, No. 1, Art. 012067, P. 1–9.
- Matveev A. D. [Multigrid finite element Method]. The Bulletin of KrasGAU. 2018, No. 2, P. 90–103 (In Russ.).
- Rabotnov Yu. N. Mekhanika deformirovannogo tverdogo tela [Mechanics of a deformed solid]. Moscow, Nauka Publ., 1988, 711 p.
- Demidov S. P. Teoriya uprugosti [Theory of elasticity]. Moscow, Vysshaya shkola Publ., 1979, 432 p.
- Timoshenko S. P., Dzh. Gud'er. Teoriya uprugosti [Theory of elasticity]. Moscow, Nauka Publ., 1979, 560 p.
- Bezuhov N. I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of the theory of elasticity, plasticity and creep]. Moscow, Vysshaya shkola Publ., 1968, 512 p.
- Samul' V. I. Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity]. Moscow, Vysshaya shkola Publ., 1982, 264 p.
- Rozin L. A. Variacionnye postanovki zadach dlya uprugih sistem [Variational problem statements for elastic systems]. Leningrad, 1978, 224 p.
- Matveev A. D. [Multigrid modeling of composites of irregular structure with a small filling ratio]. J. Appl. Mech. Tech. Phys. 2004, No. 3, P. 161–171 (In Russ.).
- Matveev A. D. [The construction of complex multigrid finite element heterogeneous and microinhomogeneities in structure]. Izvestiya AltGU. Seriya: Matematika i mekhanika. 2014, No. 1/1, P. 80–83 (In Russ.). DOI: 10.14258/izvasu (2014)1.1-18.
- Matveev A. D. [Method of generating finite elements]. The Bulletin of KrasGAU. 2018, No. 6, P. 141–154 (In Russ.).
- Matveev A. D. [Construction of multigrid finite elements to calculate shells, plates and beams based on generating finite elements]. PNRPU Mechanics Bulletin. 2019, No. 3, P. 48–57 (In Russ.). DOI: 10/15593/perm.mech/2019.3.05.
- Golushko S. K., Nemirovskij Yu.V. Pryamye i obratnye zadachi mekhaniki uprugih kompozitnyh plastin i obolochek vrashcheniya [Direct and inverse problems of mechanics of elastic composite plates and shells of rotation]. Moscow, Fizmatlit Publ., 2008, 432 p.
- Nemirovskij Yu. V., Reznikov B. S. Prochnost' elementov konstrukcij iz kompozitnyh materiallov [Strength of structural elements made of composite materials]. Novosibirsk, Nauka Publ., Sibirskoe otdelenie, 1984, 164 p.
- Kravchuk A. S., Majboroda V. P., Urzhumcev Yu. S. Mekhanika polimernyh i kompozicionnyh materialov [Mechanics of polymer and composite materials]. Moscow, Nauka Publ., 1985, 201 p.
- Alfutov N. A., Zinov'ev A. A., Popov B. G. Raschet mnogoslojnyh plastin i obolochek iz kompozicionnyh materialov [Calculation of multilayer plates and shells made of composite materials]. Moscow, Mashinostroenie Publ., 1984, 264 p.
- Pobedrya B. E. Mekhanika kompozicionnyh materialov [Mechanics of composite materials]. Moscow, MGU Publ., 1984, 336 p.
- Andreev A. N., Nemirovskij Yu. V. Mnogoslojnye anizotropnye obolochki i plastiny. Izgib, ustojchivost', kolebaniya [Multilayer anisotropic shells and plates. Bending, stability, vibration]. Novosibirsk, Nauka Publ., 2001, 288 p.
- Vanin G. A. Mikromekhanika kompozicionnyh materialov [Micromechanics of composite mate rials]. Kiev, Naukova dumka Publ., 1985, 302 p.
- Vasil'ev V. V. Mekhanika konstrukciy iz kompozicionnyh materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroenie Publ., 1988, 269 p.
- Guz' A. N., Ignatov I. V., Girchenko A. G. et al. Mekhanika kompozitnyh materialov i elementov konstrukciy [Mechanics of composite materials and structural elements]. Vol. 3. Prikladnye issledovaniya. Kiev, Naukova dumka Publ., 1983, 262 p.
- Matveev A. D. [Determination of fictitious elastic modulus of composites of complex structure with holes]. The Bulletin of KrasGAU. 2006, No. 12, P. 212–222 (In Russ.).
- Matveev A. D. [Determination of fictitious elastic modulus for three-dimensional composites based on the stiffness ratios of homogeneous finite elements]. The Bulletin of KrasGAU. 2008, No. 5, P. 34–47 (In Russ.).
- Pisarenko G. S., Yakovlev A. P., Matveev V. V. Spravochnik po soprotivleniyu materialov [Hand book of resistance materials']. Kiev, Nauk. Dumka Publ., 1975, 704 p.
- Matveev A. D. [Calculation of elastic structures using the adjusted terms of strength]. Izvestiya AltGU. 2017, No. 4, P. 116–119. DOI: 10.14258/izvasu (2017)4-21.