Content of apoptosis factors and self-organization processes in the mitochondria of heart cells in female mice C57BL/6 under growth of melanoma B16 / F10 linked with comorbid pathology
Автор: Frantsiyants E.M., Neskubina I.V., Shikhlyarova A.I., Yengibaryan M.A., Vashchenko L.N., Surikova E.I., Nemashkalova L.A., Kaplieva I.V., Trepitaki L.K., Bandovkina V.A., Pogorelova Y.A.
Журнал: Cardiometry @cardiometry
Статья в выпуске: 18, 2021 года.
Бесплатный доступ
The aim is to study some mechanisms of regulation of apoptosis and self-organization in the mitochondria in the heart cells in female mice during the growth of experimental melanoma B16/ F10 linked with chronic neurogenic pain as comorbid pathology.
Mitochondria, apoptosis, self-organization processes, heart, chronic neurogenic pain, melanoma в16/f10, female mice
Короткий адрес: https://sciup.org/148321604
IDR: 148321604 | DOI: 10.18137/cardiometry.2021.18.121130
Список литературы Content of apoptosis factors and self-organization processes in the mitochondria of heart cells in female mice C57BL/6 under growth of melanoma B16 / F10 linked with comorbid pathology
- Ventura-Clapier R, Piquereau J, Veksler V, Garnier, A. Estrogens, Estrogen Receptors Effects on Cardiac and Skeletal Muscle Mitochondria. Frontiers in endocrinology. 2019; 10: 557. DOI: 10.3389/fendo.2019.00557.
- Alla I.Shikhlyarova, Elena Frantsiyants, Lyubov Yu. Vladimirova, Anna E. Storozhakova, Larisa N. Vashchenco, Emma E. Kechedzhieva, Galina V. Zhukova, Elena A. Sheyko. Signal morphological criteria for cardiotoxicity in brest cancer chemothtrapy. Cardiometry. May 2020;16:67-73.
- Bano D, Prehn J. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine. 2018; 30: 29-37. DOI: 10.1016/j.ebiom.2018.03.016.
- McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2015; 7(4): a026716. DOI: 10.1101/cshperspect.a026716.
- Galluzzi L, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018; 25(3): 486-541. DOI: 10.1038 / s41418-017-0012-4.
- Potts MB, et al. Reduced Apaf‐1 levels in cardiomyocytes engage strict regulation of apoptosis by endogenous XIAP. J Cell Biol. 2005; 171(6): 925-930. DOI: 10.1083 / jcb.200504082.
- Qi J, et al. Mitochondrial fission is required for angiotensin II induced cardiomyocyte apoptosis mediated by a Sirt1 p53 signaling pathway. Front Pharmacol. 2018; 9: 176. DOI: 10.3389 / fphar.2018.00176.
- Jin Q, et al. DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff required mitochondrial fission and Bnip3 related mitophagy via the JNK pathways. Redox Biol. 2018; 14: 576-587. DOI: 10.1016 / j.redox.2017.11.004.
- Zhou H, et al. Mff dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS mediated cardiolipin oxidation and HK2/VDAC1 disassociation involved mPTP opening. J Am Heart Assoc. 2017; 6(3): e005328. DOI: 10.1161 / JAHA.116.005328.
- Kit OI, et al. Method for obtaining liver metastases in an experiment. Bulletin of Experimental Biology and Medicine. 2014. Vol. 157. No. 6. pp. 745-747. [in Russian]
- Kit OI, et al. Expression of markers of neoangiogenesis and the fibrinolytic system in the dynamics of experimental renal ischemia in rats. Experimental and clinical urology. 2015. No. 1. pp. 20-23. [in Russian]
- Zhukova GI, et al. Effects of combined exposure to low-intensity electromagnetic radiation of the millimeter range and complexes of essential amino acids in elderly tumor-bearing rats. South-Russian Journal of Oncology. 2020. Vol. 1 no. 4. p. 38-46. [in Russian]
- Kit OI, et al. Effect of chronic neuropathic pain on the course of malignant melanoma B16/F10 in male mice. News of higher educational institutions. The North Caucasus region. Series: Natural Sciences. 2019; 1(201):106-111. [in Russian]
- Egorova MV, Afanasyev SA. Isolation of mitochondria from animal and human cells and tissues: Modern methodological techniques. Siberian Medical Journal. 2011; 26(1-1): 22-8. [in Russian]
- Frantsiyants EM, et al. The effect of urokinase knockout on the growth of melanoma in the experiment. Siberian Scientific Medical Journal. 2019. Vol. 39. no. 4. pp. 62-70. [in Russian]
- Kit OI, et al. Processes of mitochondrial self-organization in the growth of experimental tumors in conditions of chronic neurogenic pain. News of higher educational institutions. The North Caucasus region. Series: Natural Sciences. 2019. No. 2 (202). pp. 97-105. [in Russian]
- Ribeiro RF, et al. Sex differences in the regulation of spatially distinct cardiac mitochondrial subpopulations. Mol Cell Biochem. 2016; 419: 41-51. DOI: 10.1007/s11010-016-2748-4.
- Chweih H, Castilho RF, Figueira TR. Tissue and sex specificities in Ca2+ handling by isolated mitochondria in conditions avoiding the permeability transition. Exp Physiol. 2015; 100: 1073-1092. DOI: 10.1113/EP085248.
- Milerova M, et al. Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem. 2016; 412: 147-154. DOI: 10.1007/s11010-015-2619-4.
- Umemoto T, et al. Ca2+ -mitochondria axis drives cell division in hematopoietic stem cells. The Journal of experimental medicine. 2018; 215(8): 2097-2113. DOI: 10.1084/jem.20180421.
- Glancy B, et al. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry. 2013; 52(16): 2793-2809. DOI: 10.1021/bi3015983.
- Zhou B., Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. The Journal of clinical investigation. 2018; 128(9), 3716-3726. DOI: 10.1172/JCI120849.
- Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 2015; 78: 100-106. DOI: 10.1016/j.yjmcc.2014.09.023.
- Santulli G, et al. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015; 112(36): 11389-11394. DOI: 10.1073/pnas.1513047112.
- Zhang J., et al. Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond. British journal of pharmacology. 2019; 176(22): 4319-4339. DOI: 10.1111/bph.14363.
- Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. International journal of molecular sciences. 2019; 20(10): 2386. DOI: 10.3390/ijms20102386.
- Farina B, et al. Structural and biochemical insights of CypA and AIF interaction. Scientific reports. 2017; 7(1): 1138. DOI: 10.1038/s41598-017-01337-8.
- Hangen E., et al. Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Mol. Cell. 2015; 58:1001-1014. DOI: 10.1016/j.molcel.2015.04.020.
- Sommakia S, et al. Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. Journal of molecular and cellular cardiology. 2017; 113: 22-32. DOI: 10.1016/j.yjmcc.2017.09.009.
- Kuznetsov AV, et al. The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants (Basel, Switzerland). 2019; 8(10): 454. DOI: 10.3390/antiox8100454.
- Pérez-Mejías G, et al. Cytochrome c: Surfing Off of the Mitochondrial Membrane on the Tops of Complexes III and IV. Computational and structural biotechnology journal. 2019; 17: 654-660. DOI: 10.1016/j.csbj.2019.05.002.
- Siasos G, et al. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Annals of translational medicine. 2018; 6(12): 256. DOI: 10.21037/atm.2018.06.21.
- Lavorato M, et al. Increased mitochondrial nanotunneling activity, induced by calcium imbalance, affects intermitochondrial matrix exchanges. Proc Natl Acad Sci USA. 2017; 114: 849-58. DOI: 10.1073/pnas.1617788113.