Controlling the structural formation of porized cement composites in the production of thermally efficient enclosure structures of enhanced quality

Автор: Aleksei B. Steshenko, Aleksander I. Kudyakov, Aleksandr S. Inozemtcev, Sergei S. Inozemtcev

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Construction materials science

Статья в выпуске: 5 Vol.15, 2023 года.

Бесплатный доступ

Introduction. Research to improve the quality of foam concrete products through targeted control of technological processes of structure formation of cement-based compositions is relevant. The strength of foam concrete is significantly influenced by the adhesion strength of the hardened cement paste to the aggregate. This article discusses methods of chemical and mechanochemical activation of foam concrete filler with glyoxal-containing additives, interaction with hydration products of binders and increasing the strength of the contact zone. The quality of foam concrete can be improved by controlling the properties of the contact zone. Materials and methods. The study was conducted using standard test procedures specified in national standards. Results. With preliminary chemical and mechano-chemical exposure of the sand surface to glyoxal-containing additives and its subsequent introduction into the foam concrete mixture the grade of strength of foam concrete increases to B1 while maintaining the average density grade D500 in comparison with foam concrete of the control composition, while the shrinkage value decreases by 20–38.5% and thermal conductivity coefficient by 37%. Conclusion. The use of glyoxal-based additives in foam concrete mixtures by pre-activating the sand surface can improve the quality of cement foam concrete.

Еще

Cement-based foam concrete, glyoxal-containing additives, structure formation, plastic shrinkage, porosity, compressive strength, average density, thermal conductivity coefficient

Короткий адрес: https://sciup.org/142238320

IDR: 142238320   |   DOI: 10.15828/2075-8545-2023-15-5-408-417

Список литературы Controlling the structural formation of porized cement composites in the production of thermally efficient enclosure structures of enhanced quality

  • Kudyakov A.I., Simakova A.S., Steshenko A.B. Сement based compositions with complex modifying additives based on glyoxal. The Russian Automobile and Highway Industry Journal. 2021; 18(6): 760-771. https://doi.org/10.26518/2071-7296-2021-18-6-760-771
  • Klemczak, B., Gołaszewski, J., Cygan, G., Smolana, A., Gołaszewska, M. Analysis of methods reducing early age shrinkage of ultra-light foam concrete with phase change material. International RILEM conference on synergizing expertise towards sustainability and robustness of cement-based materials and concrete structures. SynerCrete. 2023; 43. https://doi.org/10.1007/978-3-031-33211-1_102
  • Guanzheng Zh., Ray Kai L.S. A review on durability of foam concrete. Buildings. 2023; 13: 1880. https://doi.org/10.3390/buildings13071880
  • Markin V., Nerella V.N., Schröfl C., Guseynova G. and Mechtcherine V. Material design and performance evaluation of foam concrete for digital fabrication. Materials. 2019; 12: 2433. https://doi.org/10.3390/ma12152433
  • Korolev E.V., Grishina A.N., Inozemtcev A.S., Ayzenshtadt A.M. Study of the kinetics structure formation of cement dispersed systems. Part I.. Nanotechnologies in Construction: A Scientific Internet-Journal. 2022; 14(3): 176-189. https://doi.org/10.15828/2075-8545-2022-14-3-176-189
  • Gencel O., Bilir T., Bademler Z., Ozbakkaloglu T. A detailed review on foam concrete composites: ingredients, properties, and microstructure. Appl. Sci. 2022; 12: 5752. https://doi.org/10.3390/app12115752
  • Eliseeva, N., Eliseev, N. Regulation of foam stability for non-autoclave foam concrete with additives of colloidal nature. International Scientific Siberian Transport Forum TransSiberia. Lecture Notes in Networks and System. 2021; Vol. 402. https://doi.org/10.1007/978-3-030-96380-4_15
  • Steshenko A.B., Kudyakov A.I., Ryabtseva N.E. Cement based foam concrete with hardening accelerators. IOP Conf. Ser.: Mater. Sci. Eng. 2020; 911: 012003. https://doi.org/10.1088/1757-899X/911/1/012003
  • Steshenko A.B., Kudyakov A.I., Lukyanchikov S.A., Nasyrov V.A. Construction and heat-insulating foam concrete with the use of drilling sludge. AIP Conf. Proc. 2022; 2696: 020008-1–020008-5. https://doi.org/10.1063/5.0117016
  • Song N., Li Zh., Yi W., Wang Sh. Properties of foam concrete with hydrophobic starch nanoparticles as foam stabilizer. Journal of Building Engineering. 2022; 56: 104811. https://doi.org/10.1016/j.jobe.2022.104811
  • Hao Y., Yang G., Liang K. Development of fly ash and slag based high-strength alkali-activated foam concrete. Cement and Concrete Composites. 2022; 128: 104447. https://doi.org/10.1016/j.cemconcomp.2022.104447
  • Kim D.V., Bazhenova S.I., Nguyen T.Ch., Tang V.L., Do M.Ch., Le V.L., Hoang M.Th. Insulation properties and performance of foam concrete using blast furnace slag. Structural integrity and life. 2022; 22 (1): 48–56.
  • Dien V.K., Ly N.C., Lam T.V., Bazhenova S.I. Foamed concrete containing various amounts of organicmineral additives. IOP Conf. Series: Journal of Physics: Conf. Series. 2019; 1425: 012199. https://doi.org/10.1088/1742-6596/1425/1/012199
  • Xiong Y., Pang B., Liu Zh., Liu Ch., Hu Zh, Liguo Ma L. Effect of foam temperature on foam stability of foamed concrete and stabilization mechanisms. Journal of Building Engineering. 2023; 77(6):107492. https://doi.org/10.1016/j.jobe.2023.107492
  • Gökçe M., Toklu K. Ultra-low density foam concrete production using electrolyzed water. Journal of Testing and Evaluation. 2022; 50: 2. https://doi.org/10.1520/JTE20210224
  • Mansyur, Tjaronge M.W., Irmawaty R., Amiruddin A.A. Early age of volume weight, indirect tensile strength and tensile elastic modulus of foam concrete containing blended cement. IOP Conf. Ser.: Earth Environ. Sci. 2022; 1117: 012025. https://doi.org/10.1088/1755-1315/1117/1/012025
  • Кудяков В.А., Кудяков А.И., Лукьянчиков С.А., Кудяков К.Л. Управление технологическими процессами производства модифицированных бетонов. Вестник Томского государственного архитектурно-строительного университета. 2017. №6 (63). С. 147–157. [Kudyakov V.A., Kudyakov A.I., Lukyanchikov S.A., Kudyakov K.L. Control of technological processes for the production of modified concrete. Vestnik of Tomsk State University of Architecture and Building. 2017; 6(63): 147–157. (In Russian)].
  • Gorlenko N.P., Sarkisov Yu.S., Volkova V.A. Kul’chenko K. Structurization processes in the system cement–water with chemical addition of glyoxal. Russian Physics Journal. 2014; 57 (2): 278-284. https://doi.org/10.1007/s11182-014-0236-4
  • Simakova A., Kudyakov A., Efremova V., Latypov A. The effects of complex glyoxal based modifiers on properties of cement paste and hardened cement paste. AIP Conference Proceedings. 2017; 1800: 020006. https://doi.org/10.1063/1.4973022
  • Fratzke A.R., Reilly P.J. Kinetic analysis of the disproportionation of aqueous glyoxal. IJCK. 1986;18757–773.
  • Kudyakov A.I., Steshenko A.B. Study of hardened cement paste with crystalline glyoxal. Key Engineering Materials: Multifunctional Materials: Development and Application. 2016; 683: 113–117. https://doi.org/10.4028/www.scientific.net/KEM.683.113
  • Salomaa P. The kinetics of the Cannizzaro reaction of glyoxal. Acta Chemica Scandinavica. 1956;10(2): 311–319.
  • Кудяков А.И., Симакова А.С., Кондратенко В.А., Стешенко А.Б., Латыпов А.Д. Влияние органических добавок на свойства цементного теста и камня. Вестник Томского государственного архитектурно- строительного университета. – 2018. – Т. 20 (6): 138–147. [Kudyakov A.I., Simakova A.S., Kondratenko V.A., Steshenko A.B., Latypov A.D. Cement paste and brick properties modified by organic additives. Vestnik of Tomsk State University of Architecture and Building. 2018; 20(6): 138–147. (In Russian)].
  • Sokolova Y., Ayzenshtadt A.M., Strokova V.V. Evaluation of dispersion interaction in glyoxal/silica organomineral system. Journal of Physics Conference Series. 2017; 929(1): 012110. https://doi.org/10.1088/1742-6596/929/1/012110
  • Steshenko A.B., Latypov A.D., Ryabtseva N.E. The deformation characteristics of the modified heat-insulating foam concrete. J. Phys.: Conf. Ser. 2020; 1611: 012046. https://doi.org/10.1088/1742-6596/1611/1/012046
Еще
Статья научная