Correlations between elements and sequences in a numerical prism
Бесплатный доступ
A numerical prism, previously introduced by the author as an ordered set regarding the research of a three-parameter probability distribution of the hyperbolic-cosine type, which is a generalization of the known two-parameter Meixner distribution, is being considered. In geometry-related terminology, elements of a numerical prism are the coefficients of moment-forming polynomials for the specified distribution, which are obtained with the use of both differential and algebraic recurrence correlations. Each one of the infinite number of elements depends on three indices determining its position in a prism. Fixation of one or two indices results in cross-sections of the prism, which are numerical triangles or sequences. Among them, there are such well-known cross-sections as the Stirling number triangle, number triangle of coefficients in the Bessel polynomials, sequences of tangent and secant numbers, and others. However, the majority of numerical sets in the prism’s cross-sections have never been described in literature before. Considering the structure and construction algorithm, cross-sections of the numerical prism turn out to be interconnected not only by the general construction formula but also by certain correlations. As a result, formulas of connection between various groups of elements are presented in the article. In particular, expansion of secant numbers for the sum of products grouped by the number of tangent numbers’ cofactors with specification of corresponding coefficients in the expansion, representation (automatic expression) of elements of a sequence of alternating secant and tangent number through the previous ones, as well as a number of other correlations for the sequences and particular elements is determined.
Hyperbolic cosine distribution, cumulants, moments, numericalprism, cross-sections, secant numbers, tangent numbers
Короткий адрес: https://sciup.org/147232801
IDR: 147232801 | DOI: 10.14529/mmph190104
Текст научной статьи Correlations between elements and sequences in a numerical prism
We obtained the numerical set { U ( n ; k , j ) } structured as a «numerical prism» in the paper [1]. The construction of the numerical prism is based on relations between the cumulants χn and the initial moments an , where n e N , of the hyperbolic-cosine-type probability distribution defined [2, 3] by the characteristic function:
- m f (t) = | ch—t - i—sh—1| , where ц,р,ш e R; m > 0, в * 0, i = V—1. (1)
V — в m )
The obtained three-parameter distribution is described in [4] and is a generalization of the Meixner two-parameter distribution [5].
Theorem 1 ([1]). For a hyperbolic-cosine-type distribution with the characteristic function (1), the formula for calculating the cumulants xn , n = 1,2,..., is the following:
n nn
Xn = mв Pn ^ I = mШ £V(n;j) ^ I ,(2)
V m ) < в ) V m ) j=0
where Pn ( b ) are polynomials of the form:
n
Pn(b) = ZV(n;j)bj, n = 1,2,...,(3)
j = 0
and the coefficients V ( n ; j ) of the polynomials are calculated by the recurrence relation:
V (1;1) = 1, V (1; j ) = 0 for all j * 1,
V ( n + 1; j) = ( j - 1) V ( n ; j - 1) + ( j + 1) V ( n ; j + 1) for n e N . (4)
The polynomials Pn ( b ) follow differentiation of the tangent function, and are known [6, 7] as Derivative polynomials .
Theorem 2 ([1]). For a hyperbolic-cosine-type distribution with the characteristic function (1), the formula for calculating the n -th order moments is the following:
n
M ( X ) = a n = И! P n V m J
( m ’1
V e
( |
V m J
T V ; ( n ; k.j ) m k k = 1 j = 0
j
^ | , n = 0,1’2, V p J
where the moment-forming polynomials of two arguments Pn ( m , b ), n = 0,1,2,..., can be represented in the form:
nn
P n ( m ’ b ) = ZZ U ( n ; k ’ j ) m k b j ’ (6)
k = 1 j = 0
b = ^в , { U ( n ; k , j ) } is a system of the integer coefficients of the polynomials related by the equations: U (0; 0,0) = 1, U (0; k , j ) = 0 for any k , j * 0,
U ( n + 1; k , j ) = U ( n ; k - 1, j - 1) + ( j - 1) U ( n ; k , j - 1) + ( j + 1) U ( n ; k , j + 1), (7)
for n = 0,1,2,....
The identity U ( n ; 1, j ) = V ( n ; j ) follows directly from equations (4) and (7). Therefore, the numbers V ( n ; j ) are only special cases of numbers U ( n ; k , j ) for k = 1.
For each fixed k , where k e N , the corresponding subset of { U ( n ; k , j ) } forms a numerical triangle. In terms of geometry, the set { U ( n ; k , j ) } is a set of numerical triangles ordered by k , and can be considered as a «numerical prism», where for each given k the triangle is a section of the prism [1, 8]. Similarly, we can obtain sections of the prism by fixing the argument j , j = 0,1,2,.... These sets are usually novel.
Let us either fix two of the parameters n , k , j , or express two of them through the remaining parameter. The numerical sequences obtained in the numerical prism include many well-known sequences (tangent numbers, secant numbers, Stirling numbers of the first kind, coefficients in expansions of various functions, for example, in the Bessel polynomials, etc.) [9]. However, the overwhelming majority of the obtained sequences is not mentioned in the literature. The issue of novelty is solved with the help of a sufficiently complete on-line encyclopedia of integer sequences ( OEIS ) [10].
We notice the lasting interest in numerical sequences and triangles. For example, the paper [11] presents a numerical pyramid which sections are known numerical sets: those of Deleham, Euler, MacMahon, Stirling. Also, the paper [11] gives a series of numerical sequences, among which only the sequences A 000182, A 000184, A 00147, and A 085734 in OEIS are common with the numerical prism. Other sequences and triangles are also present as subsets in the considered numerical prism. The paper [12] identifies the first elements of the numerical triangle { U ( n ;1, j ) } as the numbers Tn k calculated by the recurrence relation Tnk = 5 1 k , Tn + 1 k = ( k - 1) T n k - 1 + ( k + 1) T n k + 1. This is a special case of relation (7). Along with interest in finding new numerical sequences, there is an increasing interest in classical sets of numbers considered from different points of view. In particular, the paper [13] presents simple and asymptotically fast algorithms for calculating tangent and secant numbers. In the considered numerical prism, we can not only easily calculate these sequences, but also establish structural relations between the sequences.
Cumulants and moments in the numerical prism structure
Therefore, the considered numerical prism is an ordered set { U ( n ; k , j ) } of the coefficients of the polynomials Pn ( b ) and Pn ( m , b ) that form, respectively, the cumulants and moments of the hyperbolic-cosine-type probability distribution [1]. Moreover, according to (2) and in view of the equality
Математика
U ( n ; 1, j ) = V ( n ; j ), the distribution cumulants are completely determined by the distribution parameters p.,P,m and the set of coefficients { U ( n ;1, j ) } :
( R An ( и A ( в A n " ( и A j ( в A n " .-
Xn = m I —I Pn -I = m I —I £ V (n; j) 4| = m I — I £ U (n ;1, j) bJ , where b = -.(8)
V m J l в) V m) j=0 l в) V m) j=0
For n = 1,12, j = 0,10, the corresponding section { U ( n ;1, j ) } is partially presented in table 1. According to (7), subsequent values are calculated simply, without using differential relations. Note that the section { U ( n ;1, j ) } is the known [10: А 008293] triangle of coefficients in the expansion of tg ( n ) x in powers of tg x .
Table 1
Section { U ( n ;1, j ) } of the numerical prism
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
1 |
||||||||||
2 |
1 |
1 |
|||||||||
3 |
2 |
2 |
|||||||||
4 |
2 |
8 |
6 |
||||||||
5 |
16 |
40 |
24 |
||||||||
6 |
16 |
136 |
240 |
120 |
|||||||
7 |
272 |
1232 |
1680 |
720 |
|||||||
8 |
272 |
3968 |
12096 |
13440 |
5040 |
||||||
9 |
7936 |
56320 |
129024 |
120960 |
40320 |
||||||
10 |
7936 |
176896 |
814080 |
1491840 |
1209600 |
362880 |
|||||
11 |
353792 |
3610112 |
12207360 |
18627840 |
13305600 |
||||||
12 |
353792 |
11184128 |
71867136 |
191431680 |
250145280 |
159667200 |
In order to calculate the initial moments αn of the hyperbolic-cosine-type distribution (see (5)), we use the parameters u>P>m along with all sections of the numerical prism { U ( n ; k , j ) } determined by k , where k = 1, n .
Let us consider the relation between the moments and cumulants with reference to the set { U ( n ; k , j ) } .
As is well known, the moments { a n } and cumulants { x s } of probability distributions are connected by the following polynomial relations:
a 1 = X i ;
a 2 = X 2 + x 2 ;
a g = X з + 3 X 1 X 2 + X 13 ;
a 4 = x 4 + (3 X 2 + 4 Х 1 X 3 ) + 6 X 12 X 2 + X 4 ; (9)
« 5 = X 5 + (5 X 1 X 4 + 10 X 2 X 3 ) + (10 X 12 X 3 + 15 X 1 X 22 ) + 10 X 3 X 2 + X 15 ;
a 6 = X 6 + (6 X 1 X 5 + 15 % 2 % 4 + 10 X 32) + (15 X 12 X 4 + 60 X 1 X 2 X 3 + 15 x 2 )
+ (20 X 3 X 3 + 45 X 12 X 22) + 1 5 X 4 X 2 + X 6 ;
……………………………………………………………………………. .
In the above expressions, the terms are grouped according to the number of cumulants-factors in the product. For any n , n e N , the relation takes the form:
n s1 ,s2 ,...,sk s1 s2 sk k=1 S1+ s 2+...+Sk=n,
S i ^ 0
where k is the number of the multiplied cumulants, as1,s2,...,sk are the corresponding coefficients at the products χs1 χs2 ...χsk , and si is the order of the cumulant χsi .
Theorem 3. For the hyperbolic-cosine-type distribution, consider the decomposition of the initial moments a n into sum (10) of the cumulant products with given coefficients. Then the number of cumu-lants-factors in the corresponding terms is determined by the parameter k in the formula:
nn n an = F| E mk E U (n; k, j) bj . V m ) k=1 j=0
Proof. As it follows from (5), (10), nn n n an = FI EEU(n;k,j)mkbj= E E «м2, v m ) k=1 j=0 k=1 S1+s2 +...+Sk = n,
...
., sk χ s 1 χ s 2 ... χ sk .
s , * 0
According to (8), the cumulants considered in (12) can be represented as:
( в A
X s, = m FI E U ( s i ;1, j ) b .
i I m ) j = 0
Note that, regardless of the order si of the cumulant, there is a factor m in equation (13). quently, there is a factor m k in each product of k cumulants, despite of different orders s 1, s 2,
Conse-
...
, sk of
the cumulants χ χ ...χ . s1 s2
Substitute the cumulants in the form of (13) into the right side of (12):
( R An n n , n k ( nVisi an = (в) EEU(n;k-j)mkbj = E E a,,2 s,П (в) mEU(si;1,j)b
V m ) k=1 j=0 k=1 S1+s 2 +...+Sk = n, i=1 _v m )
s i * 0
i.e.
« n
n n n n n
( - ) E m k E U ( n ; k , j ) b j = F) E m k E a s , s2
V m ) k = 1 j = 0 V m ) k = 1 s 1 + s 2 + ... + sk = n , 1 2
s , * 0
, sk П E U ( s , ;1,j ) b i = 1 l j = 0
, (14)
where each term of the polynomials of variables m and b on the right side of (14) is such that the pa-rameter k of m k indicates the number of cumulants-factors in the corresponding product. Since the polynomials on both sides of (14) are equal, coefficients at the same powers of m are also equal. Then, the following equality holds for any m :
nn m FI EU(n;k,j)bj v m ) j=0

mk E
s 1 + s 2 + ... + sk = n , s i * 0
s 1, s 2
.,
s
k
П E
U
(
s
i
;
1,
j
)
b
j i
=
1
L
j
=
0
Therefore, v^) j=0 s1+ s 2 +...+sk = n, si *0
At the same time, the power
k
and number of cumulants in the product are equal for each term on the right side of the equation.
This completes the proof of Theorem 3.
Theorem
4. There are the following relations for coefficients of the polynomials
P
n
(
m
,
b
) :
J
i,
E
U
(
n
;
k
,
j
)
b
j
=
E
a
s
1
,
s
2
,...,
sk
П E
U
(
s
i
;1,
j
)
b
, where
k
=
1,
n
.
j
=
0
s
j
+
s
2
+
...
+
sk
=
n
,
i
=
1
l
j
=
0
s
i
*
0
Proof.
Divide both sides of (15) by
(
в/m
)
n
and compare expressions of the same powers of
m
in the polynomials.
Математика
Corollary
4.1. For any
b
, the following condition holds for the section
{
U
(
n
;2,
j
)
}
of the numerical
prism: n s I УU(n;2, j)b = У as,l У U(s;1, js)bj ■ У U(l;1, jt)bj j=0 s+1=n, Ljs=0 J Ljl =0
s
,
I
*
0
In particular, compare coefficients of the same powers of
b
in the polynomials and obtain:
U(n;2,j) = У asl У s+1=n, Ljs+ji=j s, I *0
U
(
s
;1,
j
s
)
■
U
(
l
;1,
j
l
) , where
j
=
0,
n
.
Corollary
4.2. For any
b
, the following condition holds for the section
{
U
(
n
;3,
j
)
}
of the numerical
prism: Уu (n ;3, j) bj j=0 = У ars, l i+s+1=n, i, s, l *0 i s
У
U
(
i
;1,
j
i
)
b
j
У
U
(
s
;1,
js
)
b
js
. j
=
0
JL
j
s
=
0
У
u
(
l
;1,
jl
)
b
j j
l
=
0
In particular, compare coefficients of the same powers of
b
in the polynomials and obtain:
U(n;3,j) = У ai,sj У i+s+1=n, L j- + js + jl = j i, s, l *0
U
(
i
; 1,
j
i
)
■
U
(
s
; 1,
j
s
)
■
U
(
l
; 1,
jt
) , where
j
=
0,
n
.
Corollary
4.3. If
b
=
1, then relation (16) implies the following relation for coefficients of the polynomials
Pn
(
m
,
b
) :
У
u
(
n
;
k j
j
=
0
У
%-
2
s
i
+
s
2
+
...
+
s
k
=
n
,
s
,
*
0
k s
i
,
s
k
П У
U
(
s
;1,
j,
)
i
=
1
L
j-
=
0
, where
k
=
1,
n
.
Corollary 4.4. If b = 0, then relation (16) implyies the following relation for coefficients of the polynomials Pn(m, b) : k
U
(
n
;
k
,0)
=
У
a
s
1
,
s
2,...,
sk
П
U
(
s
i
;
1,0)
,
where
k
=
1,
n
.
s1+s 2 +...+sk = n, s, *0 In particular,
U
(
n
;1,0)
=
У
a
s
1
U
(
s
1
;1,0)
=
U
(
n
;1,0) ;
s
i
=
n
,
U(n;2,0) = У as,l U(s;1,0)U(l;1,0);(23)
s
+
1
=
n
,
s
,
l
*
0
U(n;3,0) = У ai,s,l U(i;1,0)■ U(s;1,0)■ U(l;1,0).(24)
i
+
s
+
1
=
n
,
i
,
s
,
l
*
0
Corollary 4.5. If b = 0, then the following relation is obtained from (22) by summation over k : nnk У U (n; k ,0) = У У as1, s 2,..., sk П U ( s,;1,0).(25) k=1 k=1 si+ s 2 +...+sk=n, si *0
Theorem
5. In a section of the numerical prism
{
U
(
n
;
k
,
j
)
}
, the numerical triangle
{
U
(2
n
;
k
,0)
}
is a decomposition of the secant numbers
{
En
}
into the sum of products grouped by the number of factors of the tangent numbers
{
T
n
}
. Namely,
n
E
0
=
1,
E
n
=
Z Z
a
2
s
1
,2s
2
,...,2
sk
T
s1
"
T
s
2
"
...
"
T
s
k
,
(26)
k
=
1 2
s
i
+
2
s
2
+
...
+
2
s
k
=
2
n
,
S
i
*
0
where
n
e
N
,
a
2
s
1
2
s
2
2
s
k
are the positive integer coefficients in the representation, see (9), of the initial probability moments
a
2
n
=
E
n
as the sum of products of the cumulants
X
1
,
X
2,—,
X
2n
(2
s
1, 2
s
2,..., 2
sk
are even orders of the multiplied cumulants).
Proof
. According to [8], if the parameters of the hyperbolic-cosine-type distribution are
ц
=
0, в
=
1,
m
=
1, then the cumulants
{
x
2
n
}
are tangent numbers
x
2
n
=
T
n
,
n
e
N
, and the initial moments
{
a
2
n
}
are secant numbers:
E
0
=
1,
a
2
n
=
E
n
, for
n
e
N. In addition, for
ц
=
0,
в
=
1,
m
=
1, relation (13) implies that:
X2n = U(2n; 1, 0), x2n-1 = U(2n -U,0) = 0;(27) and relation (11) implies that: 2 n2 a2n = Z U(2n; k, 0), a2n-1 = Z U(2n -1; k,0) = 0, k=1
since
U
(2
n
-
1;
k
, 0)
=
0 for
n
,
k
e
N
.
We use relation (25) only for even
n
and
si
(since
U
(
n
;
k
, 0) and
U
(
si
; 1, 0) are equal to zero, if
n
and
si
are odd). Redesignate the indices and obtain:
2n 2nk
Z
U
(2
n
;
k
,0)
=
Z Z
a
2
s
1
,2
s
2
,...,2
s
k
П
U
(2 ^,0).
k=1 k=1 2 s1+2 s 2 +...+2 sk =2 n, si *0 For nonzero summation indices, if 2s1 + 2s2 +... + 2sk = 2n, i.e. s1 + s2 +... + sk = n , then k < n . Consequently, in the equality above, the summation over k is conducted from 1 ton . Therefore, nnk Z U (2 n; k ,0) = Z Z a 2 s1,2 s 2,...,2sk П u (2 s;1,0), k=1 k=1 2 s1+2 s 2 +...+2 sk =2 n, si *0 i. e. a2n = Z Z a2s,.2s22skПx2si ■(28) k=1 2 s1+2 s 2+...+2 sk=2 n, si *0
Replace the moments and cumulants by the corresponding secant and tangent numbers
a
2
n
=
En
,
x
2
s
i
=
T
s
i
in (28). We arrive at relation (26):
n
E
n
=
Z Z
a
2
s
1
,2
s
2
,...,2
s
k
T
s
1
"
T
s
2
"
...
"
T
s
k
.
k=1 2 s1 +2 s 2 +...+2 sk =2 n, si *0 This completes the proof of Theorem 5.
Theorem
6. For fixed
k
,
k
=
1,2,...,2
n
, each of sequences
{
U
(2
n
;
k
,0)
}
is a sequence of such terms in the decomposition of secant numbers
{
En
}
that contain
k
factors consisting of tangent numbers. Namely,
U
(2
n
;
k
,0)
=
Z
a
2
s
1
,2
s
2
,...,2
s
k
T
s
1
"
T
s
2
"
...
"
T
s
k
, (29)
2
s
1
+
2
s
2
+
...
+
2
s
k
=
2
n
,
s
i
*
0
n
E
n
=
Z
U
(2
n
;
k
,0), (30)
k
=
1
where
{
Ti
}
are tangent numbers,
a
2
s
1
,2
s
2
,...,2
s
k
are positive integer coefficients in the representation, see (9), of the initial moments
a
2
n
=
En
as the sum of products of the cumulants
X
1
,
X
2,...,
X
2n
.
Математика
Proof
. In order to obtain equation (29), replace
n
by 2
n
in (22) and use relation (27), where
x
2
s
=
T
s
i
• Relation (30) follows from (26) and (29).
Corollary
6.1. The sequence
{
U
(2
n
; 1,0)
}
is a sequence of the tangent numbers
{
T
n
}
.
The statement directly follows from (29), since 2
s
1
+
2
s
2
+
...
+
2
s
^
=
2
n
,
a
2
s
1
2
s
2
2
s
k
=
a
2
n
for
k
=
1, and all coefficients
a
2
n
of the highest cumulants
%
2n
in formulas (9) are equal to 1.
Corollary
6.2. The sequence
{
U
(2
n
;2,0)
}
satisfies the following relation:
U
(2
n
;2,0)
=
£
a
2
s
,2
l
U
(2
s
;1,0)
U
(2
l
;1,0)
=
£
a
2
s
,2
l
T
s
■
T
l
.
2
s
+
2
1
=
2
n
, 2
s
+
2
1
=
2
n
,
s
,
I
*
0
s
,
I
*
0
The statement is a special case of (29) and (23), since
Ts
=
x
2
s
=
U
(2
s
; 1, 0) for any
s
,
s
e
N .
Corollary
6.3. The sequence
{
U
(2
n
;3,0)
}
satisfies the following relation:
U
(2
n
;3,0)
=
£
a
2t,2
s
,2
z U
(2
i
;1,0)
■
U
(2
s
;1,0)
■
U
(2
l
;1,0)
=
£
a
2,,2
s
,2
z Tt- T
s
■
T
l
.
2
i
+
2
s
+
2
l
=
2
n
, 2
i
+
2
s
+
2
l
=
2
n
,
i
,
s
,
l
*
0
i
,
s
,
l
*
0
The statement is a special case of (29) and (24), since
Ts
=
x
2
s
=
U
(2
s
; 1, 0) for any
s
,
s
e
N .
Using the formulas for representation of cumulants in terms of moments, we can also obtain inverse relations expressing the tangent numbers
{
T
}
in terms of the secant numbers
{
En
}
indicated in the section
{
U
(
n
;
k
,0)
}
.
By analogy with Theorems 5 and 6, we can also represent relations between other sequences. Let us give two examples. Let
ц
=
1,
в
=
1,
m
=
1. Then cumulants and moments of distribution connected by mutually inverse relations are the sequence (1, 2, 4, 16, 80, 512, 3904, 34816, …) [10:
А
000831] and the sequence (1, 1, 3, 11, 57, 361, 2763, 24611, …) [10:
А
001586], respectively. The latter sequence is given by generalized Euler numbers. For
ц
=
1,
в
=
1,
m
=
2 , a sequence of cumulants, i.e. a sequence of alternating secant and tangent numbers, and a sequence of moments are equal up to a shift on two positions:
xk
=
ak
-
2,
k
=
2,3,... [8]. Therefore, this sequence can be restored by the previous elements (autoexpression). If we know the structure (representation of cumulants through moments and, conversely, moments through cumulants), then we can use the numerical prism to find specific terms in the expression of each sequence through its pair sequence.
Remark
1. For 2
n
<
12, if all moments and cumulants of odd order are equal to zero, then the coefficients
a
2
s
1
,2
s
2
,...,2
s
k
used in the formulas to connect moments and cumulants of even order are as follows:
a
2
=
X
2
;
a
4
=
X
4
+
(3
X
2
);
«
6
=
X
6
+
(15
X
2
X
4
)
+
(15
x
2
); (31)
«
8
=
X
8
+
(28
X
2
X
6
+
35
X
42
)
+
(210
X
2
X
4
)
+
(105
X
4
);
«
10
=
X
10
+
(45
X
2
X
8
+
210
X
4
X
6
)
+
(630
X
2
X
6
+
1575
X
2
X
42
)
+
(3150
X
3
X
4
)
+
(945
X
5
);
«
12
=
X
12
+
(66
X
2
X
10
+
462
X
2
+
495
X
4
X
8
)
+
(1485
X
2
X
8
+
13860
X
2
X
4
X
6
+
5775
X
3)
+
+
(13860
XX
6
+
51975
X
22
X
)
+
(51975
X
4
X
4
)
+
(10395
X
26
);
Remark
2. In order to illustrate the theory, the fragment of section
{
U
(
n
;
k
,0)
}
of the numerical prism is given in table 2 (initial values for
n
=
1,16,
k
=
1, 8 ). The rows present terms in the expansion of secant numbers by tangent numbers.
Conclusion In the present work, the structured values of the numerical prism result in different relations and regularities in the field of numbers. At the same time, the numerical set {U(n; k, j)} has other applica- tions. For example, for given coefficients {U(n;k, j)} and formulas for the density of the hyperbolic-cosine-type distribution [14], we can use the relation between the initial moments and derivatives of the characteristic function in order to obtain analytically values of improper integrals for a certain class of functions. For the parameters µ, β, m , the papers [15–17] present the general form of exact formulas for the integrals of expressions containing a beta function with complex-conjugate variable arguments. In particular, according to [16], values of the integrals of a combination of a power function, an exponential function, a hyperbolic secant or cosecant, and some polynomials with different parameters are obtained for m e N . Table 2
Section
{
U
(
n
;
k
,0)
}
of the numerical prism
k n
1
2
3
4
5
6
7
8
1
2
1
3
4
2
3
5
6
16
30
15
7
8
272
588
420
105
9
10
7936
18960
16380
6300
945
11
12
353792
911328
893640
429660
103950
10395
13
14
22368256
61152000
65825760
36636600
11351340
1891890
135135
15
16
1903757312
5464904448
6327135360
3918554640
1427025600
310269960
37837800
2027025
Therefore, the integer set
{
U
(
n
;
k
,
j
)
}
introduced from probabilistic considerations is also of independent interest for mathematical analysis, number theory, coding theory, etc. A number of relations of the numerical prism and more detailed initial fragments of sections are presented in the author's monograph [17].
Список литературы Correlations between elements and sequences in a numerical prism
- Токмачев, М.С. Вычисление кумулянтов и моментов распределения Майкснера / М.С. Токмачев // Вестник НовГУ. - 2013. - № 75-2. - С. 47-51.
- Токмачев, М.С. Характеризация распределения типа гиперболического косинуса свойством постоянства регрессии / М.С. Токмачев // Деп. в ВИНИТИ 21.06.94. - № 1542. - В94.
- Токмачев, М.С. Постоянство регрессии квадратичной статистики на линейную статистику / М.С. Токмачев // Вестник НовГУ. - 1995. - № 1. - С. 139-141.
- Токмачев, М.С. Распределение типа гиперболического косинуса / М.С. Токмачев, А.М. Токмачев // Вестник НовГУ. - 2001. - № 17. - С. 85-88.
- Lai, C.D. Meixner Classes and Meixner Hyper-Geometric Distributions/ C.D. Lai // Australian & New Zealand Journal of Statistics. - 1982. - Vol. 24. - Issue 2. - P. 221-233.
- Hoffman, M.E. Derivative polynomials for tangent and secant / M.E. Hoffman // The American Mathematical Monthly. - 1995. - Vol. 102, no. 1. - P. 23-30.
- DOI: 10.2307/2974853
- Hoffman, M.E. Derivative polynomials, Euler polynomials, and associated integer sequences / M.E. Hoffman // Electronic Journal of Combinatorics. - 1999. - Vol. 6. - #R21.
- Токмачев, М.С. О числовых множествах и последовательностях в связи с распределением типа гиперболического косинуса / М.С. Токмачев // Вестник НовГУ. Сер.: Физико-математические науки. - 2015. - № 3 (86), Часть 2. - С. 35-39.
- Токмачев, М.С. Множество подмножеств в структуре некоторой числовой призмы / М.С. Токмачев // Деп. В ВИНИТИ 09.06.2016. - № 91. - В2016. - 90 с.
- The On-Line Encyclopedia of Integer Sequences™ (OEIS™). http://oeis.org (дата последнего обращения: 5.05.2018).
- Franssens, G.R. On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles / G.R. Franssens // Journal of Integer Sequences. - 2006. - Vol. 9, Issue 1. - Article 06.4.1.
- Knuth, D.E. Computation of tangent, Euler and Bernoulli numbers / D.E. Knuth, T.J. Buckholtz // Math. Comp. - 1967. - Vol. 21. - P. 663-688.
- Brent, R.P. Fast computation of Bernoulli, Tangent and Secant numbers / R.P. Brent, D. Harvey // arXiv preprint. - 2011. - arXiv:1108.0286 [math.CO].
- Токмачев, М.С. Прикладной аспект обобщенного распределения гиперболического косинуса / М.С. Токмачев // Вестник НовГУ. - 2005. - № 34. - С. 96-99.
- Токмачев, М.С. Некоторые интегралы, связанные с распределением типа гиперболического косинуса / М.С. Токмачев // Математика в вузе и в школе: Труды XXIV Международной научно-методической конференции. - СПб.: Петербургский гос. ун-т путей сообщения. - 2012. - С. 185-186.
- Токмачев, М.С. Вычисление интегралов от функций некоторого класса с вероятностной интерпретацией / М.С. Токмачев // Вестник НовГУ. Сер.: Физ-мат. Науки. - 2014. - № 80. - С. 42-46.
- Токмачев, М.С. Вероятностные распределения: от характеризации к числовым множествам / М.С. Токмачев. - Саарбрюккен: LAP LAMBERT Academic Publ., 2018. - 224 с.