Crystallographic groups for Ho"rmander fields

Бесплатный доступ

This is a preview paper on Crystallographic Groups of Ho¨ rmander Fields. We describe an emerging picture in analysis of extended groups. In particular, we introduce and provide examples of Crystallographic Groups associated to a Ho¨ rmander system of fields as well as discuss some related analysis.

Extended lie groups, noncommutative dunkl-type operators, markov semigroups, entropy & heat kernel bounds

Короткий адрес: https://sciup.org/14968907

IDR: 14968907   |   DOI: 10.15688/mpcm.jvolsu.2017.3.4

Список литературы Crystallographic groups for Ho"rmander fields

  • Agrachev A., Boscain U., Gauthier J.-P., Rossi F. The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Analysis, 2009, vol. 256, pp. 2621-2655.
  • Altafini C. A Matrix Lie Group of Carnot Type for Filiform Sub-Riemannian Structures and its Application to Control Systems in Chained Form. Proceedings of the Summer School on Differential Geometry. Coimbra, Universidade de Coimbra, 1999, pp. 59-66.
  • Ancochea J.M., Campoamor R. Characteristically Nilpotent Lie Algebras: A Survey. Extracta Mathematicae, 2001, vol. 16, no. 2, pp. 153-210.
  • Bahouri H., Gallagher I. The heat kernel and frequency localized functions on the Heisenberg group. URL: https://arxiv.org/abs/0804.0340.
  • Bakry D., Baudoin F., Bonnefont M., Chafai D. On gradient bounds for the heat kernel on the Heisenberg group. J. Func. Analysis, 2008, vol. 255, pp. 1905-1938.
  • Bakry D., Emery M. Diffusions hypercontractives. Sem. de Probab. XIX, Lecture Notes in Math. Berlin, Springer-Verlag, 1985, vol. 1123, pp. 177-206.
  • Basu D. Formal Equivalence of the Hydrogen Atom and Harmonic Oscillator and Factorization of the Bethe-Salpeter Equations. J. Math. Phys., 1971, vol. 12, pp. 1474-1483 DOI: 10.1063/1.1665759
  • Benedetto J.J., Benedetto R.L. The Construction of Wavelet Sets. Wavelets and Multi-Scale Analysis: from theory to application. Boston, Birkha¨ user, 2011, pp. 17-56 DOI: doi:10.1007/978-0-8176-8095-4
  • Benjamini I., Chavel I., Feldman A. Heat Kernel Lower Bounds on Riemannian Manifolds Using the Old Idea of Nash. Proc. of the London Math. Soc., 1996, vol. s3-72 (1), pp. 215-240 DOI: doi:10.1112/plms/s3-72.1.215
  • Berenstein A., Burman Y. Dunkl Operators and Canonical Invariants of Reflection Groups. Symmetry, Integrability and Geometry: Methods and Applications, 2009, vol. SIGMA 5, article ID: 057 DOI: doi:10.3842/SIGMA.2009.057
  • Bermu´ dez J.M.A., Stursberg O.R.C. Classification of (n -5)-filiform Lie algebras. Linear Algebra and its Applications, 2001, vol. 336, pp. 167-180.
  • Black R., Hudelson W., Lackney L., Rohal J., Adler J., Palagallo J. Selfsimilar Tilings of Nilpotent Lie Groups. Univ Acron. URL: http://jamesrohal.com/blog/wp-content/uploads/2008/10/reu-2006-final-write-up.pdf.
  • Blanchard J.D., Steffen K.R. Crystallographic Haar-type Composite Dilation Wavelets. Wavelets and Multi-Scale Analysis: from theory to application. Boston, Birkha¨ user, 2011, pp. 83-108 DOI: doi:10.1007/978-0-8176-8095-4
  • Boiteux M. The three-dimensional hydrogen atom as a restricted four-dimensional harmonic oscillator. Physica, 1973, vol. 65, pp. 381-395. 8914(73)90353-4 DOI: 10.1016/0031-
  • Bonfiglioli A., Lanconelli E., Uguzzoni F. Stratified Lie Groups and Potential Theory for their Sub-Laplacians. Berlin; Heidelberg, Springer-Verlag, 2007. 802 p.
  • Boscain U., Gauthier J.-P., Rossi F. Hypoelliptic heat kernel on 3-step nilpotent Lie groups. URL: https://arxiv.org/abs/1002.0688v1.
  • Boza L., Fedriani E.M., Nun˜ ez J. A new method for classifying complex Filiform Lie algebras. Applied Mathematics and Computation, 2001, vol. 121, pp. 169-175.
  • Bridson M., Hafliger A. Metric Spaces of Non-Positive Curvature. Berlin, Springer, 2007. 643 p. Available at: http://www.math.psu.edu/petrunin/papers/akp-papers/bridson.haefliger.pdf.
  • Cabezas J.M., Pastor E., Camacho L.M., Gomez J.R., Jimenez-Merchan A., Reyes J., Rodriguez I. Chapter 3. Some Problems About Nilpotent Lie Algebras. Ring Theory And Algebraic Geometry. Boca Raton, CRC Press, 2001, pp. 79-106 DOI: doi:10.1201/9780203907962.ch3
  • Cardoso J.L., Alvarez-Nodarse R. Recurrence relations for radial wavefunctions for the Nth-dimensional oscillators and hydrogenlike atoms. J. Phys. A: Math. Gen., 2003, vol. 36, pp. 2055-2068.
  • Cerdeira H.A. Hydrogen atom in the four-dimensional oscillator representation: matrix elements of zn. J. Phys. A: Math. Gen., 1985, vol. 18, pp. 2719-2727. URL: http://iopscience.iop.org/0305-4470/18/14/022.
  • Clarkson P.A. Painleve´ Equations -Nonlinear Special Functions. Orthogonal Polynomials and Special Functions. Berlin; Heidelberg, Springer, 2006, pp. 331-411.
  • Corwin L.J., Greenleaf F.P. Representations of nilpotent Lie groups and their applications. Cambridge, Cambridge Univ. Press, 1990. 280 p.
  • Cygan J. Heat kernels for class 2 nilpotent groups. Studia Math., 1979, vol. 64, iss. 3, pp. 227-238.
  • Davies E.B. Heat kernels and spectral theory. Cambridge, Cambridge University Press, 1989. 197 p.
  • Dixmier J. Sur les representations unitaires des groupes de Lie nilpotents. I. Amer. J. Math., 1959, vol. 81, pp. 160-170.
  • Dixmier J. Sur les representations unitaires des groupes de Lie nilpotents. II. Bull. Soc. Math. France, 1957, vol. 85, pp. 325-388.
  • Dixmier J. Sur les representations unitaires des groupes de Lie nilpotents. III. Canad. J. Math., 1958, vol. 10, pp. 321-348.
  • Dixmier J. Sur les representations unitaires des groupes de Lie nilpotents. IV. Canad. J. Math., 1959, vol. 11, pp. 321-344.
  • Dixmier J. Sur les representations unitaires des groupes de Lie nilpotents. V. Bull. Soc. Math. France, 1959, vol. 87, pp. 65-79.
  • Dixmier J. Sur les representations unitaires des groupes de Lie nilpotents. VI. Canad. J. Math., 1960, vol. 12, pp. 324-352.
  • Dixmier J. Sur les representations unitaires des groupes de Lie algebriques. Ann. Inst. Fourier (Grenoble), 1957, vol. 7, pp. 315-328.
  • Dragoni F., Kontis V., Zegarlin´ ski B. Ergodicity of Markov Semigroups with Hormander type generators in Infinite Dimensions. Journal of Potential Analysis, 2012, vol. 37, pp. 199-227. ArXiv: 1012.0257v1.
  • Driver B.K., Melcher T. Hypoelliptic heat kernel inequalities on Lie groups. Stoch. Process. Appl., 2008, vol. 118, pp. 368-388.
  • Driver B.K., Melcher T. Hypoelliptic heat kernel inequalities on the Heisenberg group. J. Func. Analysis, 2005, vol. 221, pp. 340-365.
  • Dunkl C.F., Xu Y. Orthogonal Polynomials of Several Variables. Cambridge, Cambridge University Press, 2001. 408 p.
  • Etingof P. Lectures on Calegero -Moser Systems. URL: https://arxiv.org/abs/math/0606233.
  • Etingof P., Ma X. Lecture Notes on Cherednik Algebras. URL: https://arxiv.org/abs/1001.0432v4.
  • Felder G., Veselov A.P. Action of Coxeter Groups on Harmonic Polynomials and KZ Equations. Moscow Math Journal, 2003, vol. 3, no. 4, pp. 1269-1291.
  • Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu. Painleve Transcendents: The Riemann-Hilbert Approach. Providence, RI, AMS, 2006. 553 p.
  • Folland G.B. Harmonic analysis in phase space. Princeton, Princeton Univ. Press, 1989. 288 p.
  • Fu¨ hr H. Abstract Harmonic Analysis of Continuous Wavelet Transforms. Berlin; Heidelberg, Springer-Verlag, 2005. 199 p. DOI: http://dx.doi.org/doi:10.1007/b104912.
  • Gallardo L., Yor M. Some Remarkable Properties of the Dunkl Martingales. Lecture Notes in Mathematics, 2006, vol. 1874, pp. 337-356. 540-35513-7_21 DOI: doi:10.1007/978-3-
  • Gaveau B. Principle de moindre action, propogation de la chaleur et estimees sous-elliptiques sur certains groups nilpotents. Acta Math., 1997, vol. 139, pp. 95-153.
  • Go´ mez J.R., Jimene´z-Mercha´ n A., Khakimdjanov Y. Low-dimensional filiform Lie algebras. J. Pure and Appl. Algebra, 1998, vol. 130, pp. 133-158.
  • Go´ mez J.R., Jimene´z-Mercha´ n A., Khakimdjanov Y. Symplectic structures on the filiform Lie algebras. J. Pure and Appl. Algebra, 2001, vol. 156, pp. 15-31.
  • Gong M.-P. Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and �). University of Waterloo Thesis, Waterloo, Canada. URL: http://etd.uwaterloo.ca/etd/mpgong1998.pdf.
  • Grayson M., Grossman R. Nilpotent Lie algebras and vector fields. Symbolic Computation: Applications to Scientific Computing. Philadelphia, SIAM, 1989, pp. 77-96.
  • Grigor’yan A. Gaussian Upper Bounds for the Heat Kernel on Arbitrary Manifolds. J. Differential Geometry, 1997, vol. 45, pp. 33-52.
  • Hulanicki A. The distribution of energy of the Brownian motion in Gaussian field and analytic hypoellipticity of certain subelliptic operators on the Heisenberg group. Studia Math., 1976, vol. 56, pp. 165-173.
  • Kirillov A.A. Unitary representations of nilpotent Lie groups. Russian Math. Surveys, 1962, vol. 17, pp. 53-104.
  • Kirillov A.A. Unitary representations of nilpotent Lie groups. Providence, RI, AMS, 2004. 408 p.
  • Kuczma M. Functional equations in a single variable. Warszawa, PWN, 1968. 383 p.
  • Li H.-Q. Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. J. Funct. Analysis, 2006, vol. 236, pp. 369-394.
  • Liu Y.F., Lei Y.A., Zeng J.Y. Reply to the comment by Stahlhofen on "Factorization of the radial Schro¨ dinger equation and four kinds of raising and lowering operators of hydrogen atoms and isotropic harmonic oscillators". Physics Letters A, 1998, vol. 241, pp. 300-302.
  • Liu H., Liu Y., Wang H. Multiresolution Analysis, Self-Similar Tilings and Haar Wavelets on the Heisenberg. Acta Mathematica Scientia, 2009, vol. 29, iss. 5, pp. 1251-1266 DOI: 10.1016/S0252-9602(09)60102-8
  • Liu H., Peng L. Admissible Wavelets Associated with the Heisenberg Group. Pacific Journal of Mathematics, 1997, vol. 180, pp. 101-123. http://dx.doi.o DOI: rg/10.2140/pjm.1997.180.101
  • Magnin L. Determination of 7-Dimensional Indecomposable Nilpotent Complex Lie Algebras by Adjoining a Derivation to 6-Dimensional Lie Algebras. Algebr. Represent. Theor., 2010, vol. 13, pp. 723-753 DOI: doi:10.1007/s10468-009-9172-3
  • Magnin L. Research Article Adjoint and Trivial Cohomologies of Nilpotent Complex Lie Algebras of Dimension ≤ 7. International J. of Math. and Math. Sci., 2008, vol. 2008, article ID: 805305 DOI: doi:10.1155/2008/805305
  • Noumi M., Yamada Y. Affine Weyl group symmetries in Painleve type equations. Toward the exact WKB analysis of differential equations, linear or non-linear. Kyoto, Kyoto University Press, 2000, pp. 245-259 DOI: doi:10.1007/s002200050502
  • Okamoto K. Studies on the Painleve equations. I. Ann. Mat. Pura Appl., 1987, vol. 146, pp. 337-381.
  • Okamoto K. Studies on the Painleve equations. II. Jap. J. Math., 1987, vol. 13, pp. 47-76.
  • Okamoto K. Studies on the Painleve equations. III. Math. Ann., 1986, vol. 275, pp. 221-256.
  • Okamoto K. Studies on the Painleve equations. IV. Funkcial. Ekvac., 1987, vol. 30, pp. 305-332.
  • Olshanetsky M.A., Perelomov A.M. Classical integrable finite-dimensional systems related to Lie algebras. Phys. Reports, 1981, vol. 71, pp. 313-400.
  • Opdam E.M. Lecture Notes on Dunkl Operators for Real and Complex Reflection Groups. Mathematical Society of Japan. URL: http://projecteuclid.org/euclid.msjm/1389985758. DOI: http://dx.doi.org/10.2969/msjmemoirs/008010C010.
  • Painleve` dents. transcendents. URL: http://en.wikipedia.org/wiki/Painleve_transcen-
  • Ro¨ sler M. Dunkl Operators: Theory and Applications. Lecture Notes in Math. Berlin; Heidelberg, Springer-Verlag, 2003, vol. 1817, pp. 93-136.
  • Ro¨ sler M. Generalized Hermite polynomials and the heat equation for Dunkl operators. Commun. Math. Phys., 1998, vol. 192, pp. 519-542.
  • Sakka A. Ba¨ cklund transformations for Painleve I and II equations to Painleve-type equations of second order and higher degree. Phys. Lett. A., 2002, vol. 300, pp. 228-232 DOI: doi:10.1016/S0375-9601(02)00780-6
  • Seeley C. 7-dimensional nilpotent Lie algebras. Trans. Amer. Math. Soc., 1993, vol. 335, pp. 479-496.
  • Skjelbred T., Sund T. On the classification of nilpotent Lie algebras. Comptes Rendus Acad. Sc. Paris serie A, 1978, vol. 286, pp. 241-242.
  • Suzuki M., Tahara N., Takano K. Hierarchy Backlund transformation groups of the Painleve systems. J. Math. Soc. Japan Vol., 2004, vol. 56, no. 4, pp. 1221-1224.
  • Umlauf K.A. Uber Die Zusammensetzung Der Endlichen Continuierlichen Transformationsgruppen, Insbesondre Der Gruppen Vom Range Null (1891). Whitefish, Montana, Kessinger Publ., 2010. 82 p.
  • Vergne M. Cohomologie des algtbres de Lie nilpotentes. Application a l’etude de la variete des algebres de Lie nilpotentes. Bull. Sot. Math. France, 1970, vol. 98, pp. 81-116.
  • Warhurst B. Contact and Quasiconformal Mappings on real model of filiform groups. Bull. Austral. Math. Soc., 2003, vol. 68, pp. 329-343.
  • Yang Q. Multiresolution Analysis on Non-Abelian Locally Compact Groups. PhD Thesis, 1999. URL: www.nlc-bnc.ca/obj/s4/f2/dsk1/tape9/PQDD_0018/NQ43523.pdf.
  • Zegarlin´ ski B. Analysis on Extended Heisenberg Group. Annales de la Faculte des Sciences de Toulouse, 2011, vol. XX, no. 2, pp. 379-405.
  • Zeng G.-J., Zhou S.-L., Ao S.-M., Jiang F.-S. Transformation between a hydrogen atom and a harmonic oscillator of arbitrary dimensions. J. Phys. A: Math. Gen., 1997, vol. 30, pp. 1775-1783.
  • Zhu F. The heat kernel and the Riesz transform on the quaternionic Heisenberg groups. Pacific J. Math., 2003, vol. 209, pp. 175-199.
Еще
Статья научная