Data-driven Approximation of Cumulative Distribution Function Using Particle Swarm Optimization based Finite Mixtures of Logistic Distribution

Автор: Rajasekharreddy Poreddy, Gopi E.S.

Журнал: International Journal of Intelligent Systems and Applications @ijisa

Статья в выпуске: 5 vol.16, 2024 года.

Бесплатный доступ

This paper proposes a data-driven approximation of the Cumulative Distribution Function using the Finite Mixtures of the Cumulative Distribution Function of Logistic distribution. Since it is not possible to solve the logistic mixture model using the Maximum likelihood method, the mixture model is modeled to approximate the empirical cumulative distribution function using the computational intelligence algorithms. The Probability Density Function is obtained by differentiating the estimate of the Cumulative Distribution Function. The proposed technique estimates the Cumulative Distribution Function of different benchmark distributions. Also, the performance of the proposed technique is compared with the state-of-the-art kernel density estimator and the Gaussian Mixture Model. Experimental results on κ−μ distribution show that the proposed technique performs equally well in estimating the probability density function. In contrast, the proposed technique outperforms in estimating the cumulative distribution function. Also, it is evident from the experimental results that the proposed technique outperforms the state-of-the-art Gaussian Mixture model and kernel density estimation techniques with less training data.

Еще

Cumulative Distribution Function (CDF), Probability Density Function (PDF), Logistic Mixture Model (LMM), Particle Swarm Optimization (PSO), Extreme Learning Machine (ELM), Interior-point Method

Короткий адрес: https://sciup.org/15019515

IDR: 15019515   |   DOI: 10.5815/ijisa.2024.05.02

Список литературы Data-driven Approximation of Cumulative Distribution Function Using Particle Swarm Optimization based Finite Mixtures of Logistic Distribution

  • D. Morales-Jimenez and J.F. Paris, “Outage probability analysis for η − μ fading channels”, IEEE Communications Letters 14 (6) (2010), 521–523.
  • M. Milisic, M. Hamza and M. Hadzialic, “Outage Performance of L-Branch Maximal-Ratio Combiner for Generalized κ – μ Fading”, in VTC Spring 2008 - IEEE Vehicular Technology Conference, 2008, pp. 716–731, [10.1109/VETECS.2008.79].
  • M.D. Renzo, F. Graziosi and F. Santucci, “On the cumulative distribution function of quadratic-form receivers over generalized fading channels with tone interference”, IEEE Trans. On Communications 57 (7) (2009), 2122–2137.
  • F.J. Lopez-Martinez, D. Morales-Jimenez, E. Martos-Naya and J.F. Paris, “On the Bivariate Nakagami-m Cumulative Distribution Function: Closed-Form Expression and Applications”, IEEE Trans. on Communications 61 (4) (2013), 1404–1414.
  • N.Y. Ermolova and O. Tirkkonen, “Cumulative Distribution Function of Bivariate Gamma Distribution With Arbitrary Parameters and Applications”, IEEE Communications Letters 19(2) (2015), 167–170.
  • J.A. Maya, L.R. Vega and C.G. Galarza, “A Closed-Form Approximation for the CDF of the Sum of Independent Random Variables”, IEEE Signal Processing Letters 24 (1) (2017), 121–125.
  • W. Kaczynski, L. Leemis, N. Loehr and J. McQueston, “Nonparametric Random Variate Generation Using a Piecewise Linear Cumulative Distribution Function”, Communications in Statistics - Simulation and Computation 41(4) (2012), 449–468. doi:10.1080/03610918.2011.606947.
  • W. Kaczynski, L. Leemis, N. Loehr and J. McQueston, “Bivariate Nonparametric Random Variate Generation Using a Piecewise-Linear Cumulative Distribution Function”, Communications in Statistics - Simulation and Computation 41(4) (2012), 469–496. doi:10.1080/03610918.2011.594532.
  • M. D. Yacoub, “The κ−μ distribution and the η−μ distribution”, IEEE Antennas and Propagation Magazine 49 (1) (2007), 68–81.
  • L. Nicolas and W. Xavier, “Fast multivariate empirical cumulative distribution function with connection to kernel density estimation”, Computational Statistics and Data Analysis, 162 (2021), 1-16.
  • E. Zamanzade, M. Mahdizadeh and H.M. Samawi, “Efficient estimation of cumulative distribution function using moving extreme ranked set sampling with application to reliability”, AStA Advances in Statistical Analysis, 104 (2020), 485-502.
  • C. Cristiano and M. Danilo, “An Extreme Learning Machine Approach to Density Estimation Problems”, IEEE Transactions on Cybernetics, 47 (10) (2017), 3254-3265.
  • M. A. Ibrahim, C. E. Zouaoui, L. Ali and R. Mustapha, “kNN local linear estimation of the conditional cumulative distribution function: Dependent functional data case”, Comptes Rendus Mathematique, 356 (10) (2018), 1036-1039.
  • P. Puchert, P. Hermosilla, T. Ritschel and T. Ropinski, “Data-driven deep density estimation”, Neural Computing and Applications, 33 (2021), 16773-16807.
  • M. X. Zhu and Y. H. Shao, “Classification by Estimating the Cumulative Distribution Function for Small Data”, IEEE Access, 11 (2023), 41142-41152.
  • H. J. Malik and B. Abraham, “Multivariate Logistic Distributions”, The Annals of Statistics 1 (3) (1973), 588–590.
  • Z. Q. Shi, T. R. Zheng and J. Q. Han, “Identifiability of multivariate logistic mixture models”, 2014, Preprint at https://arxiv.org/abs/1208.3546.
  • Q.Y.Z. G.B. Huang and C.K. Siew, “Extreme learning machine: Theory and applications”, Neurocomputing 70 (2006), 489–501.
  • C. Cervellera and D. Macciò, “An Extreme Learning Machine Approach to Density Estimation Problems”, IEEE Trans. on Cybernetics 47(10) (2017), 3254–3265.
  • S.J.W. F.A. Potra, “Interior-point methods”, Journal of Comp. and Appl. Mathematics 124(1) (2000), 281–302.
  • C. Bishop, “Mixture models and EM”, in Pattern Recognition and Machine Learning, Springer, New York, 2006, pp. 423–459.
  • J. Kennedy and R.C. Eberhart, “Particle swarm optimization”, in IEEE International Conference on Neural Networks, Vol. 4, IEEE Service Center, Piscataway, NJ, 1995, pp. 1942–1948.
  • E.S. Gopi, “Artificial Intelligence”, in Algorithm Collections for Digital Signal Processing Applications using Matlab, Springer Dordrecht, Netherlands, 2007, pp. 1–8.
  • P. Rajasekharreddy and E.S. Gopi, “Improvement of accuracy of under-performing classifier in decision making using discrete memoryless channel model and Particle Swarm Optimization”, Expert Systems with Applications 213, pp.1-12.
Еще
Статья научная