Designing of the biological product "Agrobiolog" for mitigating pesticide stress in agricultural plants and stimulating their growth

Автор: Chetverikov S.P., Chetverikova D.V., Hkudaygulov G.G., Bakaeva M.D., Kenjieva A.A.

Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet

Рубрика: Пищевая биотехнология

Статья в выпуске: 4 (98) т.85, 2023 года.

Бесплатный доступ

The results of the selection of new plant growth-promoting bacteria resistant to herbicides of different chemical structure are presented. Two methods were used for screening: sowing on microbiological media from freshly sampled soil and obtaining enrichment cultures from soil samples exposed to herbicides for a month at a temperature of 28 °C. Inoculation was carried out on selective nutrient media containing herbicides Octapon extra (2,5 g/l), Florax (2,5 g/l), Dicamba (1 g/l), Nanomet (1 g/l), Spetsnaz (1 g/l) or Chistalan (2,5 g/l). These herbicides are commonly used to control weeds in wheat crops. The isolated microorganisms belong to the genus Pseudomonas, fix nitrogen, mobilize phosphates, synthesize phytohormones and antimicrobial compounds. They also can mitigate pesticide stress of crops. An anti-stress biological product containing them has been developed and tentatively named "AGROBIOLOG". For its production, the optimal composition of the nutrient medium and the conditions for industrial submerged cultivation on reactors of various volumes were determined. In the laboratory fermenter FA10 with a volume of 10 liters after 72 hours of cultivation at a temperature of 28 °C, a stirrer speed of 200 rpm, aeration of 0.5 volumes of air per 1 min per 1 volume of medium, the amount of viable cells was 28 billion CFU/ml of culture liquid. Cultivation on biological reactors with a volume of 1000 liters under the same conditions allowed to achieve a titer of 6.0 billion CFU/ml of culture liquid.

Еще

Plant stress neutralizer, biological product, pgpb, psmb, plant productivity

Короткий адрес: https://sciup.org/140304453

IDR: 140304453   |   DOI: 10.20914/2310-1202-2023-4-86-90

Список литературы Designing of the biological product "Agrobiolog" for mitigating pesticide stress in agricultural plants and stimulating their growth

  • Dayan F.E. Current status and future prospects in herbicide discovery. Plants. 2019. vol. 8.no. 9. pp. 341. doi: 10.3390/plants8090341
  • Pereira S.P., Santos S.M., Fernandes M.A., Deus C.M. et al. Improving pollutants environmental risk assessment using a multi model toxicity determination with in vitro, bacterial, animal and plant model systems: The case of the herbicide alachlor. Environmental Pollution. 2021. vol. 286. pp. 117239. doi:10.1016/j.envpol.2021.117239
  • Bakaeva M., Chetverikov S., Timergalin M., Feoktistova A. et al. PGP-Bacterium Pseudomonas protegens improves bread wheat growth and mitigates herbicide and drought stress. Plants. 2022. vol. 11. no. 23. pp. 3289. doi: 10.3390/plants11233289
  • Zhang Y., Hu Y., An N., Jiang D. et al. Short-term response of soil enzyme activities and bacterial communities in black soil to a herbicide mixture: Atrazine and Acetochlor. Applied Soil Ecology. 2023. vol. 181. no 1. pp. 104652. doi: 10.1016/j.apsoil.2022.104652
  • Etesami H., Adl S. M. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome in stress regulation. 2020. pp. 147-203. doi:10.1007/978-981-15-2576-6_9
  • Basu A., Prasad P., Das S.N., Kalam S. et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability. 2021. vol. 13. no 3. pp. 1140. doi: 10.3390/su13031140
  • Santoyo G., Urtis-Flores C.A., Loeza-Lara P.D., Orozco-Mosqueda M.D.C. et al. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology. 2021. vol. 10. no 6. pp. 475. doi: 10.3390/biology10060475
  • Ha-Tran D.M., Nguyen T.T.M., Hung S.H., Huang E. et al. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. International Journal of Molecular Sciences. 2021. vol. 22. no 6. pp. 3154. doi:10.3390/ijms22063154
  • Munir N., Hanif M., Abideen Z., Sohail M. et al. Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy. 2022. vol. 12. no 9. pp. 2069. doi: 10.3390/agronomy12092069
  • Jiang Z., Jiang D., Zhou Q., Zheng Z. et al. Enhancing the atrazine tolerance of Pennisetum americanum (L.) K. Schum by inoculating with indole-3-acetic acid producing strain Pseudomonas chlororaphis PAS18. Ecotoxicology and Environmental Safety. 2020. vol. 202. pp. 110854. doi:10.1016/j.ecoenv.2020.110854
  • Motamedi M., Zahedi M., Karimmojeni H., Baldwin T.C. et al. Rhizosphere-associated bacteria as biofertilizers in herbicide-treated alfalfa (Medicago sativa). Journal of Soil Science and Plant Nutrition. 2023. vol. 23. pp. 2585–2598. doi:10.1007/s42729-023-01214-6
  • Sarvani B., Reddy R.S., Prasad J.S. Characterization of plant growth promoting rhizobacteria for compatibility with commonly used Agrochemicals. Ecology, Environment and Conservation. 2021. vol. 27. pp. 264-269.
  • Ma Y.N., Theerakulpisut P., Riddech N. Pesticide tolerant rhizobacteria isolated from rice (Oryza sativa) overcomes the effects of salt and drought stress in pesticide contaminated condition. Plant and Soil. 2023. vol. 490. no 1. pp. 521-539. doi: 10.1007/s11104-023-06098-0
  • Roy T., Das N., Majumdar S. Pesticide tolerant rhizobacteria: paradigm of disease management and plant growth promotion. Plant microbe symbiosis. 2020. pp. 221-239. doi:10.1007/978-3-030-36248-5_12
  • Montes Luz B., Conrado A.C., Ellingsen J.K., Monteiro R.A. et al. Acetylene Reduction Assay: A Measure of Nitrogenase Activity in Plants and Bacteria. Current Protocols. 2023. vol. 3. no 5. Available at: https://currentprotocols.onlinelibrary. wiley.com/doi/abs/10.1002/cpz1.766
  • Arkhipova T.N., Galimsyanova N.F., Kuzmina L.Y., Vysotskaya L.B. Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity andphosphorus mobility in the rhizosphere. Plant, Soil and Environment. 2019. vol. 65. no. 6. pp. 313–319.
  • Sanchez-Gonzalez M.E., Mora-Herrera M.E., Wong-Villarreal A., De La Portilla-López N. et al. Effect of pH and Carbon Source on Phosphate Solubilization by Bacterial Strains in Pikovskaya Medium. Microorganisms. 2022. vol. 11. no. 1. pp. 49. doi:10.3390/microorganisms11010049
  • Kurepa J., Smalle J.A. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International journal of molecular sciences. 2022. vol. 23. no 4. pp. 1933. doi: 10.3390/ijms23041933
  • He Y., Liu Y., Li M., Lamin-Samu A.T. et al. The Arabidopsis SMALL AUXIN UP RNA32 protein regulates ABA-mediated responses to drought stress. Frontiers in plant science. 2021. vol. 12. pp. 625493. doi: 10.3389/fpls.2021.625493
  • Korshunova T.Y., Bakaeva M.D., Kuzina E.V., Rafikova G.F. et al. Role of Bacteria of the Genus Pseudomonas in the Sustainable Development of Agricultural Systems and Environmental Protection. Applied Biochemistry and Microbiology. 2021. vol. 57. no 3. pp. 281–296. doi: 10.1134/S000368382103008X
Еще
Статья научная