Determination of a coefficient and kernel in a D-dimensional fractional integro-differential equation

Автор: Rahmonov A.A.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.26, 2024 года.

Бесплатный доступ

This paper is devoted to obtaining a unique solution to an inverse problem for a multid-mensional time-fractional integro-differential equation. In the case of additional data, we consider an inverse problem. The unknown coefficient and kernel are uniquely determined by the additional data. By using the fixed point theorem in suitable Sobolev spaces, the global in time existence and uniqueness results of this inverse problem are obtained. The weak solvability of a nonlinear inverse boundary value problem for a $d$-dimensional fractional diffusion-wave equation with natural initial conditions was studied in the work. First, the existence and uniqueness of the direct problem were investigated. The considered problem was reduced to an auxiliary inverse boundary value problem in a certain sense and its equivalence to the original problem was shown. Then, the local existence and uniqueness theorem for the auxiliary problem is proved using the Fourier method and contraction mappings principle. Further, based on the equivalency of these problems, the global existence and uniqueness theorem for the weak solution of the original inverse coefficient problem was established for any value of time.

Еще

Fractional wave equation, caputo fractional derivative, fourier method, mittag-leffler function, bessel inequality

Короткий адрес: https://sciup.org/143183208

IDR: 143183208   |   DOI: 10.46698/g9973-1253-2193-w

Список литературы Determination of a coefficient and kernel in a D-dimensional fractional integro-differential equation

  • Babenko, Y. I. Heat and Mass Transfer, Leningrad, Chemia, 1986.
  • Caputo, M. and Mainardi, F. Linear Models of Dissipation in Anelastic Solids, La Rivista del Nuovo Cimento, 1971, vol. 1, no. 2, pp. 161-198. DOI: 10.1007/BF02820620.
  • Gorenflo, R. and Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order, Fractals Fractional Calculus in Continuum Mechanics, Eds. A. Carpinteri, F. Mainar, New York, Springer, 1997, pp. 223-276.
  • Gorenflo, R. and Rutman, R. On Ultraslow and Intermediate Processes, Transform Methods and Special Functions, Eds. P. Rusev, I. Dimovski, V. Kiryakova, Singapore, Science Culture Technology Publishing, 1995, pp. 61-81.
  • Jin, B. and Rundell, W. A Tutorial on Inverse Problems for Anomalous Diffusion Processes, Inverse Problems, 2015, vol. 31, no. 3, p. 035003. DOI: 10.1088/0266-5611/31/3/035003.
  • Mainardi, F. Fractional calculus: Some Basic Problems in Continuum and Statistical Mechanics, Fractals and Fractional Calculus in Continuum Mechanics, Eds. A. Carpinteri, F. Mainardi, New York, Springer, 1997, p. 291-348.
  • Beshtokov, M. Kh. and Erzhibova, F. A. On Boundary Value Problems for Fractional-Order Differential Equations, Siberian Advances in Mathematics, 2021, vol. 31, no. 4, pp. 229-243. DOI: 10.1134/S1055134421040015.
  • Klaseboer, E., Sun, Q. and Chan, D. Y. Non-Singular Boundary Integral Methods for Fluid Mechanics Applications, Journal of Fluid Mechanics, 2012, vol. 696, pp. 468-478. DOI: 10.1017/jfm.2012.71.
  • Ata, K. and Sahin, M. An Integral Equation Approach for the Solution of the Stokes Flow with Hermite Surfaces, Engineering Analysis with Boundary Elements, 2018, vol. 96, pp. 14-22. DOI: 10.1016/j.enganabound.2018.07.017.
  • Kuzmina, K. and Marchevsky, I. The Boundary Integral Equation Solution in Vortex Methods with the Airfoil Surface Line Discretization into Curvilinear Panels, Topical Problems of Fluid Mechanics 2019, 2019, pp. 131-138. DOI:10.14311/TPFM.2019.019.
  • Lienert, M. and Tumulka, R. A New Class of Volterra-Type Integral Equations from Relativistic Quantum Physics, Journal of Integral Equations and Applications, 2019, vol. 31, no. 4, pp. 535-569. DOI: 10.1216/JIE-2019-31-4-535.
  • Sidorov, D. Integral Dynamical Models: Singularities, Signals, and Control, World Scientific, Singapore, 2014.
  • Abdou, M. A. and Basseem, M. Thermopotential Function in Position and Time for a Plate Weakened by Curvilinear Hole, Archive of Applied Mechanics, 2022, vol. 92, no. 3, pp. 867-883. DOI: 10.1007/s00419-021-02078-x.
  • Matoog, R. T. Treatments of Probability Potential Function for Nuclear Integral Equation, Journal of Physical Mathematics, 2017, vol. 8, no. 2, pp. 2090-0902. DOI: 10.4172/2090-0902.1000226.
  • Gao, J., Condon, M. and Iserles, A. Spectral Computation of Highly Oscillatory Integral Equations in Laser Theory, Journal of Computational Physics, 2019, vol. 395, pp. 351-381. DOI: 10.1016/j.jcp.2019.06.045.
  • Durdiev, D. K., Rahmonov A. A. and Bozorov Z. R. A Two-Dimensional Diffusion Coefficient Determination Problem for the Time-Fractional Equation, Mathematical Methods in the Applied Sciences, 2021, vol. 44, pp. 10753-10761. DOI: 10.1002/mma.7442.
  • Subhonova Z. A. and Rahmonov, A. A. Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation, Lobachevskii Journal of Mathematics, 2021, vol. 42, no. 15, pp. 3747-3760. DOI: 10.1134/s1995080222030209.
  • Kochubei, A. N. A Cauchy Problem for Evolution Equations of Fractional Order, Differential Equations, 1989, vol. 25, pp. 967-974.
  • Kochubei, A. N. Fractional-Order Diffusion, Differential Equations, 1990, vol. 26, pp. 485-492.
  • Eidelman, S. D. and Kochubei, A. N. Cauchy Problem for Fractional Diffusion Equations, Journal of Differential Equations, 2004, vol. 199, no. 2, pp. 211-255. DOI: 10.1016/j.jde.2003.12.002.
  • Durdiev, D. K. and Rahmonov, A. A. A Multidimensional Diffusion Coefficient Determination Problem for the Time-Fractional Equation, Turkish Journal of Mathematics, 2022, vol. 46, no. 6, pp. 2250-2263. DOI: 10.55730/1300-0098.3266.
  • Yong Zhou. Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, 2016, 294 p.
  • Wei, T., Zhang, Y. and Gao, D. Identification of the Zeroth-Order Coefficient and Fractional Order in a Time-Fractional Reaction-Diffusion-Wave Equation, Mathematical Methods in the Applied Sciences, 2022, vol. 46, no. 1, pp. 142-166. DOI: 10.1002/mma.8499.
  • Lorenzi, A. and Sinestrari, E. An Inverse Problem in the Theory of Materials with Memory, Nonlinear Analysis: Theory, Methods and Applications, 1988, vol. 12, no. 12, pp. 411-423. DOI: 10.1016/0362-546X(88)90080-6.
  • Grasselli M., Kabanikhin S. I. and Lorenzi A. An Inverse Hyperbolic Integro-Differential Problem Arising in Geophysics II, Nonlinear Analysis: Theory, Methods and Applications, 1990, vol. 15, pp. 283-298.
  • Wang, H. and Wu, B. On the Well-Posedness of Determination of Two Coefficients in a Fractional Integro-Differential Equation, Chinese Annals of Mathematics, Series B 2014, vol. 35, no. 3, pp. 447-468. DOI: 10.1007/s11401-014-0832-1.
  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 2006.
  • Adams, R. A. Sobolev Spaces, New York, Academic Press, 1975.
  • Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, New York, Springer Science and Business Media, 2012.
  • Brezis, H. Functional Analysis, Sobolev Spaces, and Partial Differential Equations, Springer, 2010, 614 p.
  • Djrbashian, M. M. Integral Transforms and Representations of Functions in the Complex Domain, Moscow, Nauka, 1966, 672 p. (in Russian).
  • Sakamoto, K. and Yamamoto, M. Initial Value/Boundary Value Problems for Fractional Diffusion-Wave Equations and Applications to Some Inverse Problems, Journal of Mathematical Analysis and Applications, 2011, vol. 382, no. 1, pp. 426-447. DOI: 10.1016/j.jmaa.2011.04.058.
  • Wu, B. and Wu, S. Existence and Uniqueness of an Inverse Source Problem for a Fractional Integro-Differential Equation, Computers and Mathematics with Applications, 2014, vol. 68, no. 10, pp. 1123-1136. DOI: 10.1016/j.camwa.2014.08.014.
Еще
Статья научная