Determination of shaft rotation angle from accelerations of the wireless sensor by the novel numerical method

Бесплатный доступ

The scheduled maintenance allows us to prevent breakdowns and unplanned downtime of equipment but limits the flexibility of manufacturing systems. On the other hand, condition monitoring concept enhances the manufacturing systems flexibility but requires reliable diagnostic information in real-time. Modern technologies, e.g., wireless power and Industrial Internet of Things (IIoT), allow implementing high-sensitivity sensors such as the Wireless Acceleration Sensor (WAS) for condition monitoring. The WAS is mounted on a machinery rotating shaft and the WAS measures angular, linear accelerations and angle of the shaft simultaneously. Moreover, the WAS contains a high-performance microcontroller, which allows processing measured data and estimating machinery condition in real-time. However, the accuracy of the angle measurement by the WAS significantly affects the accuracy of linear accelerations measurement by the WAS. In this paper, the authors propose the novel numerical method which allows us to measure accurately of a rotation angle and linear accelerations of the shaft. The method is based on a regularization technique and application of finite-difference equations. Besides, the study shows the results of simulation at applying the numerical method to calculate the rotation angle of the shaft using measurement data, which contain noise, obtained from the wireless accelerations sensor. The simulation results show that the numerical method effectively determines the rotating angle and the method is robust to noise.

Еще

Angular acceleration, rotating shaft, wireless sensor, numerical method, regularization method, inverse problem

Короткий адрес: https://sciup.org/147232195

IDR: 147232195   |   DOI: 10.14529/ctcr180315

Список литературы Determination of shaft rotation angle from accelerations of the wireless sensor by the novel numerical method

  • Asynchronous Input Gear Damage Diagnosis Using Time Averaging and Wavelet Filtering / M.A. Jafarizadeh, R. Hassannejad, M.M. Ettefagh, S. Chitsaz // Mech. Syst. Signal Process. - 2008. - Vol. 22. - P. 172-201. DOI: 10.1016/j.ymssp.2007.06.006
  • Feldman, M. Hilbert Transform in Vibration Analysis / M. Feldman // Mech. Syst. Signal Process. - 2011. - Vol. 25 (3). - P. 735-802. DOI: 10.1016/j.ymssp.2010.07.018
  • Ahamed, N. Spur Gear Tooth Root Crack Detection Using Time Synchronous Averaging under Fluctuating Speed / N. Ahamed, Y. Pandya, A. Parey // Measurement. - 2014. - Vol. 52. - P. 1-11. DOI: 10.1016/j.measurement.2014.02.029
  • Amarnath, M. Local Fault Detection in Helical Gears via Vibration and Acoustic Signals Using EMD Based Statistical Parameter Analysis / M. Amarnath, I.R. Praveen Krishna // Measurement. - 2014. - Vol. 58. - P. 154-164. DOI: 10.1016/j.measurement.2014.08.015
  • A Gear Fault Diagnosis Using Hilbert Spectrum Based on MODWPT and a Comparison with EMD Approach / Yang Yu, He Yigang, Cheng Junsheng, Yu Dejie // Measurement. - 2009. - Vol. 42. - P. 542-551. DOI: 10.1016/j.measurement.2008.09.011
  • A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring / D. Ha, H. Park, S. Choi, Y. Kim // Sensors. - 2013. - Vol. 13 (12). - P. 16090-16104.
  • DOI: 10.3390/s131216090
  • Kavitha, S. High Performance MEMS Accelerometers for Concrete SHM Applications and Comparison with COTS Accelerometers / S. Kavitha, R.J. Daniel, K. Sumangala // Mech. Syst. Signal Process. - 2016. - Vol. 66. - P. 410-424.
  • DOI: 10.1016/j.ymssp.2015.06.005
  • Wireless Health Monitoring System for Vibration Detection of Induction Motors / S. Korkua, H. Jain, W.J. Lee, C. Kwan // 2010 IEEE Industiral and Commercial Power Systems Technical Conf. - Conf. Record (Tallahassee, FL, USA). - 2010. - P. 1-6.
  • DOI: 10.1109/icps.2010.5489899
  • An Availability of MEMS-Based Accelerometers and Current Sensors in Machinery Fault Diagnosis / J. Son, B. Ahn, J. Ha, B. Choi // Measurement. - 2016. - Vol. 94. - P. 680-691.
  • Патент на полезную модель 142934 Российская Федерация, МПК7 G 01 P 15/02, G 01 H 9/00. Устройство измерения виброускорения подвижных элементов машин и механизмов / В.В. Синицин, В.В. Синицин, А.С. Семенов, А.Л. Шестаков; заявитель и патентообладатель ФГБОУ ВПО «ЮУрГУ» (НИУ). - № 2014109714/28; заявл. 12.03.2014; опубл. 10.07.2014, Бюл. № 19.
  • Chinchalkar, S. Determination of Crack Location in Beams Using Natural Frequencies / S. Chinchalkar // Journal of Sound and Vibration. - 2001. - Vol. 247, iss. 3. - P. 417-429.
  • DOI: 10.1006/jsvi.2001.3748
  • Vibration-Based Inverse Algorithms for Detection of Delamination in Composites / Z. Zhang, K. Shankar, T. Ray et al. // Composite Structures. - 2013. - Vol. 102. - P. 226-236.
  • DOI: 10.1016/j.compstruct.2013.03.012
  • Jang, T.S. A New Method for Detecting Non-linear Damping and Restoring Forces in Non-Linear Oscillation Systems from Transient Data / T.S. Jang, S. Choi Hang, S.L. Han // International Journal of Non-Linear Mechanics. - 2009. - Vol. 44, iss. 7. - P. 801-808.
  • DOI: 10.1016/j.ijnonlinmec.2009.05.001
  • A Novel Application of Radial Basis Functions for Solving a Model of First-Order Integro-Ordinary Differential Equation / K. Parand, S. Abbasbandy, S. Kazem, J.A. Rad // Communications in Nonlinear Science and Numerical Simulation. - 2011. - Vol. 16, iss. 11. - P. 4250-4258.
  • DOI: 10.1016/j.cnsns.2011.02.020
  • Sinitsin, V.V. Wireless Acceleration Sensor of Moving Elements for Condition Monitoring of Mechanisms / V.V. Sinitsin, A.L. Shestakov // Meas. Sci. Technol. - 2017. - Vol. 28, no. 9. - P. 1-8.
  • DOI: 10.1088/1361-6501/aa7ab6
  • Yaparova, N.M. Method for Temperature Measuring Inside a Cylindrical Body Based on Surface Measurements / N.M. Yaparova, A.L. Shestakov // 14th IMEKO TC10 Workshop Technical Diagnostics, Italy. - 2016. - P. 8-12.
Еще
Краткое сообщение