Disintegration-wave method of recovery of industrial waste iron and steel industry enterprises
Автор: Vasechkin M.A., Kustov I.V., Titov N.S., Chertov E.D.
Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet
Рубрика: Информационные технологии, моделирование и управление
Статья в выпуске: 1 (67), 2016 года.
Бесплатный доступ
Rational use of raw materials and waste is one of the most important factors determining the effectiveness of any processing enterprise. Industrial wastes of mining and metallurgical industries are a valuable source of many elements. However, little activity of the mineral and inconsistent chemical and phase composition of the waste reduce their attractiveness for use as a secondary raw material, and the presence of heavy metals and water-soluble compounds is a serious environmental threat. Fractional excretion of elements that make up the slag can be carried out with the help of their recovery by disintegration-wave method. The paper presents a machine-hardware circuits for the implementation of recovery process of slag and disintegrator design. In conducting research on the example of slag samples of the enterprises in Stavropol and Krasnoyarsk territories, it was found out that the observed enrichment of slags on the composition of iron takes place, its physical and chemical activity increases and persists for a long period of time. These facts were noted in the study of the microstructure and the results of spectral analysis of the initial slags and subjected to recovery by disintegration-wave method. The results analysis led to the conclusion about the possibility of waste recovery of mining and metallurgical industries with by disintegration-wave method. Resulting in the processing materials with enhanced activity of the mineral part and certain chemical and phase composition, can be used as raw material for the production of metallurgical, cement and other industries.
Короткий адрес: https://sciup.org/14040574
IDR: 14040574 | DOI: 10.20914/2310-1202-2016-1-52-56