Диагностика эпилепсии: от истоков до гибридного метода ПЭТ/МРТ

Автор: Знаменский И.А., Долгушин М.Б., Юрченко А.А., Ростовцева Т.М., Каралкина М.А.

Журнал: Клиническая практика @clinpractice

Рубрика: Научные обзоры

Статья в выпуске: 3 т.14, 2023 года.

Бесплатный доступ

Проблема диагностики и лечения эпилепсии интересует медицинское сообщество на протяжении нескольких тысяч лет. Представления о причинах и механизмах развития данного состояния в течение этого периода неоднократно претерпевали существенные изменения, что позволило достичь несомненных успехов как в диагностике заболевания, так и в его лечении. Широкий спектр диагностических методов на современном этапе позволяет локализовать эпилептогенный очаг, что имеет особое значение у пациентов с фармакорезистентной эпилепсией при планировании хирургического лечения. Результаты операции напрямую зависят от того, насколько точно удалось выявить эпилептические очаги (один или несколько) и оценить возможности их резекции. В этой связи исследования возможностей и совершенствование новых диагностических методик обладают потенциалом улучшения результатов хирургического лечения и качества жизни пациентов с фармакорезистентной эпилепсией. В статье подробно изложены этапы развития диагностики эпилепсии - от первого опыта применения электроэнцефалографии в 1920-х годах до современных гибридных методик, таких как SISCOM (Subtraction Ictal SPECT Co-Registered to MRI - субтракционная иктальная однофотонная эмиссионная компьютерная томография, совмещённая с магнитно-резонансной томографией) и позитронная эмиссионная томография, совмещённая с магнитно-резонансной томографией.

Еще

Эпилепсия, диагностика, магнитно-резонансная томография, мрт, однофотонная эмиссионная компьютерная томография, офэкт, позитронная эмиссионная томография, совмещённая с компьютерной томографией, пэт-кт, позитронная эмиссионная томография, совмещённая с магнитно-резонансной томографией, пэт-мрт

Еще

Короткий адрес: https://sciup.org/143180555

IDR: 143180555   |   DOI: 10.17816/clinpract400254

Список литературы Диагностика эпилепсии: от истоков до гибридного метода ПЭТ/МРТ

  • Löscher W, Klein P. The Pharmacology and clinical efficacy of antiseizure medications: From bromide salts to cenobamate and beyond. CNS Drugs. 2021;35(15):935–963. doi: 10.1007/s40263-021-00827-8
  • Новиков А.Е. Эпилептология: факты, личности, приоритеты. Иваново: ПресСто, 2018. 228 с. [Novikov AE. Epileptology: Facts, personalities, priorities. Ivanovo: PresSto; 2018. 228 p. (In Russ).]
  • Руднев В.И., Карпов В.П. Гиппократ. Избранные книги. Москва, 1936. 736 с. [Rudnev VI, Karpov VP. Hippocrates. Selected books. Moscow; 1936. 736 р. (In Russ).]
  • Hall M. Lectures on the nervous system and its diseases. Sherwood, Gilbert, and Piper; 1836. 171 p.
  • Eadie MJ. Cortical epileptogenesis: Hughlings Jackson and his predecessors. Epilepsia. 2007;48(11):2010–2015. doi: 10.1111/j.1528-1167.2007.01163.x
  • Brown-Séquard CE. Course of lectures on the physiology and pathology of the central nervous system: Delivered at the Royal College of Surgeons of England in May, 1858. Lippincott, 1860. 276 p.
  • Kussmaul A, Tenner A. On the nature and origin of epileptiform convulsions. BoD-Books Demand, 1859. 380 p.
  • Van der Kolk S. Professor Schroeder von der Kolk on the minute structure and functions of the spinal cord and medulla oblongata, and on the proximate cause and rational treatment of epilepsy. Br Foreign Med Chir Rev. 1860;25(49):73–81.
  • Reynolds JR, Hartshorne H. A system of medicine. HC Lea, 1879. 82 p.
  • Wilks S. Observations on the pathology of some of the diseases of the nervous system. Guy’s Hospital Reports. 1866;(12):157–244.
  • Eadie M. The epileptology of John Thompson Dickson (1841–1874). Epilepsia. 2007;48(1):23–30. doi: 10.1111/j.1528-1167.2006.00908.x
  • Scott J. Selected writings of John Hughlings Jackson. Am J Psychiatry. 1958;116(5):479a. doi: 10.1176/AJP.116.5.479-A
  • Anwar H, Khan QU, Nadeem N, et al. Epileptic seizures. Discoveries. 2020;8(2):e110. doi: 10.15190/d.2020.7
  • Makievskaya CI, Popkov VA, Andrianova NV, et al. Ketogenic diet and ketone bodies against ischemic injury: Targets, mechanisms, and therapeutic potential. Int J Mol Sci. 2023; 24(3):2576.
  • Juhász C, Mittal S. Molecular imaging of brain tumorassociated epilepsy. Diagnostics. 2020;10(12):1049. doi: 10.3390/diagnostics10121049
  • Hotka M, Kubista H. The paroxysmal depolarization shift in epilepsy research. Int J Biochemistry Cell Biology. 2019;(107): 77–81. doi: 10.1016/j.biocel.2018.12.006
  • Карлов В.А. Учение об эпилептической системе. Заслуга отечественной научной школы // Эпилепсия и пароксизмальные состояния. 2017. Т. 9, № 4. С. 76–85. [Karlov VA. The concept of the «Epileptic system» is credited to Russian medical science. Epilepsy and paroxysmal conditions. 2017;9(4):76–85. (In Russ).] doi: 10.17749/2077-8333.2017.9.4.076-085
  • Горбачёва Л.Р., Помыткин И.А., Сурин А.М., и др. Астроциты и их роль в патологии центральной нервной системы // Российский педиатрический журнал. 2018. Т. 21, № 1. С. 46–53. [Gorbacheva LR, Pomytkin IA, Surin AM, et al. Astrocytes and their role in the pathology of the central nervous system. Russ Pediatric J. 2018;21(1):46–53. (In Russ).] doi: 10.18821/1560-9561-2018-21-1-46-53
  • Rossi D. Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Progress Neurobiol. 2015;(130):86–120. doi: 10.1016/j.pneurobio.2015.04.003
  • Sun J, Zheng Y, Chen Z, Wang Y. The role of Na+-K+-ATPase in the epileptic brain. CNS Neurosci Ther. 2022;28(9):1294–1302. doi: 10.1111/cns.13893
  • Grisar T, Guillaume D, Delgado-Escuet AV. Contribution of Na+, K+-ATPase to focal epilepsy: A brief review. Epilepsy Res. 1992;12(2):141–149. doi: 10.1016/0920-1211(92)90034-q
  • Камкин А.Г., Киселева И.С. Физиология и молекулярная биология мембран клеток. Москва: Академия, 2008. 592 с. [Kamkin AG, Kiseleva IS. Physiology and molecular biology of cell membranes. Moscow: Academy; 2008. 592 p. (In Russ).]
  • Пожилова Е.В., Новиков В.Е., Левченкова О.С. Митохондриальный АТФ-зависимый калиевый канал и его фармакологические модуляторы // Обзоры по клинической фармакологии и лекарственной терапии. 2016. Т. 14, № 1. С. 29–36. [Senerzhova EV, Novikov VE, Levchenkova OS. Mitochondrial ATP-dependent potassium channel and its pharmacological modulators. Rev Clin Pharmacol Drug Therapy. 2016;14(1): 29–36. (In Russ).] doi: 10.17816/RCF14129-36
  • Tenney JR, Rozhkov L, Horn P, et al. Cerebral glucose hypometabolism is associated with mitochondrial dysfunction in patients with intractable epilepsy and cortical dysplasia. Epilepsia. 2014;55(9):1415–1422. doi: 10.1111/epi.12731
  • Witte O. Physiological basis of pathophysiological brain rhythms. Acta Neurobiol Exp. 2000;60(2):289–297.
  • Харибегашвили А.С., Евтушенко С.К., Иванова М.Ф. О возможных новых нейрохимических механизмах патогенеза эпилепсии // Международный неврологический журнал. 2017. № 2. С. 11–15. [Kharibegashvili AS, Yevtushenko SK, Ivanova MF. Possible new neurochemical mechanisms of epilepsy pathogenesis. Int Neurol J. 2017;(2):11–15. (In Russ).] doi: 10.22141/2224-0713.2.88.2017.100192
  • Kim JH, Marton J, Ametamey SM, Cumming P. A review of molecular imaging of glutamate receptors. Molecules. 2020;25(20):4749. doi: 10.3390/molecules25204749
  • Ren E, Curia G. Synaptic reshaping and neuronal outcomes in the temporal lobe epilepsy. Int J Mol Sci. 2021;22(8):3860. doi: 10.3390/ijms22083860
  • Chugani HT, Conti JR. Classification of infantile spasms in 139 cases: The role of positron emission tomography. Epilepsia. 1994;35(8):19.
  • Leiderman DB, Albert P, Balish M. The dynamics of metabolic change following seizures as measured by positron emission tomography with fludeoxyglucose F-18. Arch Neurol. 1994; 51(9):932–936. doi: 10.1001/archneur.1994.00540210106019
  • Чистякова О.В., Шпаков А.О. Современные достижения в изучении глюкозных транспортеров в центральной нервной системе // Цитология. 2019. Т. 61, № 3. С. 235–246. [Chistyakova OV, Shpakov AO. Modern achievements in the study of glucose transporters in the central nervous system. Cytology. 2019;61(3):235–246. (In Russ).] doi: 10.1134/S0041377119030027
  • Oldan JD, Shin HW, Khandani AH, et al. Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure. 2018;(61):128–134. doi: 10.1016/j.seizure.2018.07.022
  • Grouiller F. All-in-one interictal presurgical imaging in patients with epilepsy: Single-session EEG/PET/(f) MRI. Eur J Nuclear Med Mol Imaging. 2015;42(7):1133–1143. doi: 10.1007/s00259-015-3045-2
  • Stanisic M, Coello C, Ivanović J, et al. Seizure outcomes in relation to the extent of resection of the perifocal fluorodeoxyglucose and flumazenil PET abnormalities in anteromedial temporal lobectomy. Acta Neurochirurg. 2015;157(11):1905–1916. doi: 10.1007/s00701-015-2578-2
  • Horsley V. Brain-surgery. Brit Med J. 1886;2(1345):670–675.
  • Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacol. 2020;(168):107966. doi: 10.1016/j.neuropharm.2020.107966
  • Pittau F, Grouiller F, Spinelli L, et al. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol. 2014;(5):31. doi: 10.3389/fneur.2014.00031
  • West S, Nevitt SJ, Cotton J, et al. Surgery for epilepsy. Cochrane Database Sys Rev. 2019;6(6):CD010541. doi: 10.1002/14651858. CD010541.pub3
  • Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72(3): 606–638. doi: 10.1124/pr.120.019539
  • Fattorusso A, Matricardi S, Mencaroni E, et al. The pharmacoresistant epilepsy: An overview on existant and new emerging therapies. Front Neurol. 2021;(12):674483. doi: 10.3389/fneur.2021.674483
  • Stone JL, Hughes JR. Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J Clin Neurophysiol. 2013;30(1):28–44. doi: 10.1097/WNP.0b013e31827edb2d
  • Gloor P. Hans berger and the discovery of the electroencephalogram. Electroencephalography Clin Neurophysiol. 1969;(Suppl 28):1–36.
  • Gibbs FA, Davis H. Changes in the human electroencephalogram associated with loss of consciousness. Am J Physiol. 1935;(113):49–50.
  • Gibbs FA, Gibbs EL, Lennox WG. Epilepsy: A paroxysmal cerebral dysrhythmia. Epilepsy Behav. 2002;3(4):395–401. doi: 10.1016/s1525-5050(02)00050-1
  • Пенфилд В., Эриксон Т. Эпилепсия и мозговая локализация: Патофизиология, лечение и профилактика эпилептических припадков. Москва: Медгиз, 1949. 450 с. [Penfield V, Erickson T. Epilepsy and brain localization: Pathophysiology, treatment and prevention of epileptic seizures. Moscow: Medgiz; 1949. 450 р. (In Russ).]
  • Гриненко О.А., Головтеев А.Л., Коптелова А.М., и др. Хирургия эпилепсии при многоочаговом поражении головного мозга. Опыт лечения детей с туберозным склерозом // Вестник эпилептологии. 2014. № 1-2. С. 7–20. [Grinenko OA, Golovteev AL, Koptelova AM, et al. Surgery of epilepsy with multi-focal brain damage. Experience in the treatment of children with tuberous sclerosis. Bulletin Epileptol. 2014;(1-2): 7–20. (In Russ).]
  • Chassoux F, Rodrigo S, Semah F, et al. FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology. 2010;75(24):2168–2175. doi: 10.1212/WNL.0b013e31820203a9
  • Kudr M, Krsek P, Marusic P, et al. SISCOM and FDG-PET in patients with non-lesional extratemporal epilepsy: Correlation with intracranial EEG, histology, and seizure outcome. Epileptic Dis. 2013;15(1):3–13. doi: 10.1684/epd.2013.0560
  • Shorvon SD. A history of neuroimaging in epilepsy 1909–2009. Epilepsia. 2009;50(Suppl 3):39–49. doi: 10.1111/j.1528-1167.2009.02038.x
  • Bull JW, Fischgold H. A short history of neuroradiology. In E. Cabanis, ed. Contribution l’Histoire de la Neuroradiologie Europenne. Editions Pradel, Paris; 1989. 14 р.
  • Lauterbur PC. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973. Clin Orthop Relat Res. 1989;(244):3–6.
  • Cook MJ, Fish DR, Shorvon SD, et al. Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain. 1992;115(4):1001–1015. doi: 10.1093/brain/115.4.1001
  • Riney K, Bogacz A, Somerville E, et al. ILAE classification and definition of epilepsy syndromes with onset at a variable age: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia. 2022;63(6):1443–1474. doi: 10.1111/epi.17240
  • Bien CG, Granata А, Antozzi C, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: A European consensus statement. Brain. 2005;128(3):454–471. doi: 10.1093/brain/awh415
  • Baumgartner C, Koren JP, Britto-Arias M, et al. Presurgical epilepsy evaluation and epilepsy surgery. F1000Res. 2019;(8):F1000 Faculty Rev-1818. doi: 10.12688/f1000research.17714.1
  • Opheim G, van der Kolk A, Bloch KM, et al. 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice. Neurology. 2021;96(7):327–341. doi: 10.1212/WNL.0000000000011413
  • Stevelink R, Sanders MW, Tuinman MP, et al. Epilepsy surgery for patients with genetic refractory epilepsy: A systematic review. Epileptic Dis. 2018;20(2):99–115. doi: 10.1684/epd.2018.0959
  • Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance Med. 1990;14(1):68–78. doi: 10.1002/mrm.1910140108
  • Fernández S, Donaire A, Seres E, et al. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res. 2015;(111):1–9. doi: 10.1016/j.eplepsyres.2014.12.011
  • Wang J, Guo K, Cui B, et al. Individual [18F] FDG PET and functional MRI based on simultaneous PET/MRI may predict seizure recurrence after temporal lobe epilepsy surgery. Eur Radiol. 2022;32(6):3880–3888. doi: 10.1007/s00330-021-08490-9
  • Poirier SE, Kwan BY, Jurkiewicz MT, et al. An evaluation of the diagnostic equivalence of 18F-FDG-PET between hybrid PET/ MRI and PET/CT in drug-resistant epilepsy: A pilot study. Epilepsy Res. 2021;(172):106583. doi: 10.1016/j.eplepsyres.2021.106583
  • Chen T, Guo L. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: A meta-analysis. Seizure. 2016;(41):43–50. doi: 10.1016/j.seizure.2016.06.024
  • So EL. Role of neuroimaging in the management of seizure disorders. Mayo Clin Proc. 2002;77(11):1251–1264. doi: 10.4065/77.11.1251
  • [Alabart NB, Parego XS. Imaging in epilepsy: Functional studies. (In Spanish).] Radiol. 2012;54(2):124–136. doi: 10.1016/j.rx.2011.05.018
  • Rüber T, David B, Elger CE. MRI in epilepsy: Clinical standard and evolution. Curr Opinion Neurol. 2018;31(2):223–231. doi: 10.1097/WCO.0000000000000539
  • Opheim G, van der Kolk A, Bloch KM, et al. 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice. Neurology. 2021;96(7):327–341. doi: 10.1212/WNL.0000000000011413
  • Van Graan LA, Lemieux L, Chaudhary UJ. Methods and utility of EEG-fMRI in epilepsy. Quant Imaging Med Surg. 2015;5(2): 300–312. doi: 10.3978/j.issn.2223-4292.2015.02.04
  • Ingmar B, Roberto S, Gerrit H, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377(17):1648–1656. doi: 10.1056/NEJMoa1703784
  • Guo Z, Zhang C, Wang X, et al. Is intracranial electroencephalography mandatory for MRI-negative neocortical epilepsy surgery? J Neurosur. 2022;1–11. doi: 10.3171/2022.8.JNS22995
  • Galazzo IB, Mattoli MV, Pizzini FB, et al. Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of 18F-FDG PET and arterial spin labeling. Neuroimage Clin. 2016;(11):648–657. doi: 10.1016/j.nicl.2016.04.005
  • Ilyas-Feldmann M, Vorderwülbecke B, Steinbrenner M. [Bildgebung in der prächirurgischen Epilepsiediagnostik. (In German).] Der Nervenarzt. 2022;93(6):592–598. doi: 10.1007/s00115-021-01180-3
  • Theodore WH, Newmark ME, Sato S, et al. [18F]Fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol. 1983;14(4):429–437. doi: 10.1002/ana.410140406
  • Oldan JD, Shin HW, Khandani AH, et al. Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure. 2018;(61):128–134. doi: 10.1016/j.seizure.2018.07.022
  • Willmann O, Wennberg R, May T, et al. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: A meta-analysis. Seizure. 2007;16(6):509–520. doi: 10.1016/j.seizure.2007.04.001
  • Wong CH, Bleasel A, Wen L, et al. Relationship between preoperative hypometabolism and surgical outcome in neocortical epilepsy surgery. Epilepsia. 2012;53(8):1333–1340. doi: 10.1111/j.1528-1167.2012.03547.x
  • Stanisic M, Coello C, Ivanović J, et al. Seizure outcomes in relation to the extent of resection of the perifocal fluorodeoxyglucose and flumazenil PET abnormalities in anteromedial temporal lobectomy. Acta Neurochirurg. 2015;157(11):1905–1916. doi: 10.1007/s00701-015-2578-2
  • Rosenkrantz AB, Friedman K, Chandarana H, et al. Current status of hybrid PET/MRI in oncologic imaging. Am J Roentgenol. 2016;206(1):162. doi: 10.2214/AJR.15.14968
  • Джужа Д.А. Гибридные системы ПЭТ/МРТ в онкологии: настоящее и будущее // Лучевая диагностика. Лучевая терапия. 2017. Т. 1. С. 51–59. [Juzha DA. Hybrid PET/MRI systems in oncology: Present and future. Radiat Diagnost. Radiat Therapy. 2017;(1):51–59. (In Russ).]
  • Shin HW, Jewells V, Sheikh A, et al. Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure. 2015;(31):1–4. doi: 10.1016/j.seizure.2015.06.010
  • Schramm G, Langner J, Hofheinz F, et al. Quantitative accuracy of attenuation correction in the Philips Ingenuity TF whole-body PET/MR system: A direct comparison with transmission-based attenuation correction. Nuklearmedizin. 2013;26(1):115–126. doi: 10.1007/s10334-012-0328-5
  • Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: The next generation of multimodality imaging? Semin Nucl Med. 2008;38(3): 199–208. doi: 10.1053/j.semnuclmed.2008.02.001
  • Zaidi H, Ojha N, Morich M, et al. Design and performance evaluation of a whole-body Ingenuity TF PETMRI system. Phys Med Biol. 2011;56(10):3091. doi: 10.1088/0031-9155/56/10/013
  • Juhász C, John F. Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy. Seizure. 2020;(77):15–28. doi: 10.1016/j.seizure.2019.05.008
  • Rho JM, Shao LR, Stafstrom CE. 2-Deoxyglucose and betahydroxybutyrate: metabolic agents for seizure control. Front Cell Neurosci. 2019;(13):172. doi: 10.3389/fncel.2019.00172
  • Miller-Thomas MM, Benzinger TL. Neurologic applications of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):297–313. doi: 10.1016/j.mric.2016.12.003
  • Debets RM, Sadzot B, van Isselt JW, et al. Is 11C-flumazenil PET superior to 18FDG PET and 123I-iomazenil SPECT in presurgical evaluation of temporal lobe epilepsy? J Neurol Neurosurg Psychiatry. 1997;62(2):141–150. doi: 10.1136/jnnp.62.2.141
  • Kaqawa K, Chugani DC, Asano E, et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C] methyl-L-trypotophan position emission tomograpgy (PET). Child Neurol. 2005;25(5):429–438. doi: 10.1177/08830738050200050701
  • Kumar A, Chugani HT. The role of radionuclide imaging in epilepsy, part 2: Epilepsy syndromes. J Nucl Med Technol. 2017;45(1):22–29. doi: 10.2967/jnumed.113.129593
  • Mishra AM, Bai H, Gribizis A, Blumenfeld H. Neuroimaging biomarkers of epileptogenesis. Neurosci Lett. 2011;497(3): 194–204. doi: 10.1016/j.neulet.2011.01.076
Еще
Статья обзорная