“Digital Twin” of the Arctic Population in Demographic Research and Territorial Development Management

Автор: Smirnov A.V.

Журнал: Arctic and North @arctic-and-north

Рубрика: Northern and arctic societies

Статья в выпуске: 53, 2023 года.

Бесплатный доступ

The article considers “digital twins” of the population as a tool for socio-demographic research and territorial management. The experience of creating digital twins of the population and interactive websites devoted to demographic issues is systematized. A methodology for creating a digital twin of the Arctic population is proposed, based on three methodological principles: consideration of the hierarchy of territories, spatial representation of data, and combining demographic statistics with new digital data sources. The author has developed the Digital twin of the Arctic population — an interactive website (dashboard) containing detailed data on the Arctic population, including municipal and settlement levels. It includes demographic statistics, census results and data from digital platforms. The Digital twin of the Arctic population covers such issues as the size, dynamics and composition of the population, resettlement, natural and migration movement, labor and employment, transport movements, science and education, and the impact of the pandemic on demographic processes. Tools of ranking, multivariate analysis, clustering and forecasting of indicator values are implemented for researchers. From the viewpoint of state and municipal management, the main interest is the demographic profiles of regions and territories, reflecting up-to-date information about the demographic situation. Using the Digital twin of the Arctic population, the author draws conclusions about the spatial patterns of the demographic development of the Russian Arctic.

Еще

Population, demography, digital twins, dashboard, data source, governance, Arctic

Короткий адрес: https://sciup.org/148329499

IDR: 148329499   |   DOI: 10.37482/issn2221-2698.2023.53.260

Список литературы “Digital Twin” of the Arctic Population in Demographic Research and Territorial Development Management

  • Lundgren A., Randall L., Norlén G. State of the Nordic Region 2020 – Wellbeing, Health and Digitali-sation Edition. Copenhagen, Nordic Council of Ministers, 2020, 71 p. DOI: 10.6027/nord2020-052
  • Smirnov A.V. Vliyanie pandemii na demograficheskie protsessy v Rossiyskoy Arktike [The Impact of the Pandemic on Demographic Processes in the Russian Arctic]. Ekonomicheskie i sotsial'nye peremeny: fakty, tendentsii, prognoz [Economic and Social Changes: Facts, Trends, Forecast], 2021, vol. 14, no. 6, pp. 258–274. DOI: 10.15838/esc.2021.6.78.15
  • Kitchin R. Setevoy urbanizm, osnovannyy na dannykh [Data-Driven, Networked Urbanism]. In: Seti goroda: Lyudi. Tekhnologii. Vlasti [City Networks. People. Technologies. Authorities]. Moscow, New Literary Observer Publ., 2021, pp. 58–80. (In Russ.)
  • Dmitrieva T.E., Chuprova I.A. Informatsionnaya osnova sotsial'no-ekonomicheskogo razvitiya Ark-ticheskoy zony Rossiyskoy Federatsii [Information Basis for Socio-Economic Development of the Arctic Zone of Russian Federation]. In: Nauka v regional'nom prostranstve sovremennoy Rossii i za-rubezh'ya: sbornik nauchnykh statey [Science in the Regional Space of Modern Russia and Foreign Countries]. Syktyvkar, KSC UB RAS Publ., 2019, pp. 141–147. (In Russ.)
  • Batty M., Milton R. A New Framework for Very Large-Scale Urban Modelling. Urban Studies, 2021, vol. 58 (15), pp. 3071–3094. DOI: 10.1177/0042098020982252
  • Wickham H. Mastering Shiny: Build Interactive Apps, Reports, and Dashboards Powered by R. CA: O'Reilly, 2021. 369 p.
  • Matheus R., Janssen M., Maheshwari D. Data Science Empowering the Public: Data-Driven Dash-boards for Transparent and Accountable Decision-Making in Smart Cities. Government Information Quarterly, 2018, vol. 37, iss. 3. 101284. DOI: 10.1016/j.giq.2018.01.006
  • Nochta T., Wan L., Schooling J.M., Parlikad A.K. A Socio-Technical Perspective on Urban Analytics: The Case of City-Scale Digital Twins. Journal of Urban Technology, 2020, vol. 28 (4), pp. 263–287. DOI: 10.1080/10630732.2020.1798177
  • Lutz W., Goujon A., Kc S., Stonawski M., Stilianakis N. Demographic and Human Capital Scenarios for the 21st Century: 2018 Assessment for 201 Countries. Luxembourg, Publications Office of the Euro-pean Union, 2018, 595 p. DOI: 10.2760/41776
  • Zamyatina N.Yu., Yashunsky A.D. Virtual'naya geografiya virtual'nogo naseleniya [Virtual Geography of Virtual Population]. Monitoring obshchestvennogo mneniya: ekonomicheskie i sotsial'nye peremeny [Monitoring of Public Opinion: Economic and Social Changes], 2018, no. 1, pp. 117–137. DOI: 10.14515/monitoring.2018.1.07
  • Petrov A.N., Golosov N., Degai T., Welford M., Degroote J., Devlin M., Savelyev A. The “second wave” of the COVID-19 pandemic in the Arctic: Regional and temporal dynamics. International Journal of Circumpolar Health, 2021, vol. 80 (1), pp. 1925446. DOI: 10.1080/22423982.2021.1925446
  • Ahmad I., Flanagan R., Staller K. Increased Internet Search Interest for GI Symptoms May Predict COVID-19 Cases in US Hotspots. Clinical Gastroenterology and Hepatology, 2020, vol. 18, iss. 12, pp. 2833–2834. DOI: 10.1016/j.cgh.2020.06.058
  • Zamyatina N.Yu., Pilyasov A.N. The New Theory of the Arctic and Northern Development: Multi-Scale Interdisciplinary Synthesis. Arktika i Sever [Arctic and North], 2018, no. 31, pp. 4–21. DOI: 10.17238/issn2221-2698.2018.31.5
  • Jungsberg L., Turunen E., Heleniak T., Wang S., Ramage J., Roto J. Atlas of Population, Society and Economy in the Arctic. Stockholm, Nordregio, 2019, 78 p. DOI: 10.30689/WP2019:3.1403-2511
  • Cesare N., Lee H., McCormick T., Spiro E., Zagheni E. Promises and Pitfalls of Using Digital Traces for Demographic Research. Demography, 2018, vol. 55 (5), pp. 1979–1999. DOI: 10.1007/s13524-018-0715-2
  • Smirnov A.V. Tsifrovye sledy naseleniya kak istochnik dannykh o migratsionnykh potokakh v ros-siyskoy Arktike [Digital Traces of the Population as a Data Source on Migration Flows in the Russian Arctic]. Demograficheskoe obozrenie [Demographic Review], 2022, vol. 9, no. 2, pp. 42–64. DOI: 10.17323/demreview.v9i2.16205
  • Wickham H. Tidy Data. Journal of Statistical Software, 2014, vol. 59 (10), pp. 1–23. DOI: 10.18637/jss.v059.i10
  • Dabbas E. Interactive Dashboards and Data Apps with Plotly and Dash: Harness the power of a fully fledged frontend web framework in Python – no JavaScript required. Birmingham: Packt, 2021. 364 p.
  • Lazhentsev V.N. Kontseptsiya programmnogo resheniya problem formirovaniya i razvitiya terri-torial'no-khozyaystvennykh system [A Concept for Program Solution to the Issues of Formation and Development of Territorial-Economic Systems]. Ekonomicheskie i sotsial'nye peremeny: fakty, ten-dentsii, prognoz [Economic and Social Changes: Facts, Trends, Forecast], 2017, vol. 10, no. 5, pp. 37–50. DOI: 10.15838/esc/2017.5.53.3
  • Danchev V., Porter M.A. Migration Networks: Applications of Network Analysis to Macroscale Mi-gration Patterns. In: Research Handbook on International Migration and Digital Technology. Chel-tenham, Edward Elgar Publishing, 2021, pp. 70–90. DOI: 10.4337/9781839100611
  • Fauzer V.V., Lytkina T.S., Fauzer G.N. Osobennosti rasseleniya naseleniya v Arkticheskoy zone Rossii [Features of Population Settlement in the Arctic Zone of Russia]. Arktika: ekologiya i ekonomika [Arctic: Ecology and Economy], 2016, no. 2 (22), pp. 40–50.
Еще
Статья научная