Динамика гидрохимических показателей щелочного соленого озера Хилганта (Юго-Восточное Забайкалье)

Автор: Намсараев З.Б., Банзаракцаева Т.Г., Дашина Б.Б., Намсараев Б.Б.

Журнал: Вестник Бурятского государственного университета. Философия @vestnik-bsu

Рубрика: Гидрохимия

Статья в выпуске: 3, 2009 года.

Бесплатный доступ

Рассмотрена динамика изменения гидрохимических показателей озера Хилганта во влажный период (с 1995 по 1998 г.) и в засушливый период (с 1999 г.). Определено, что воды озера принадлежат к хлоридно-сульфатному натриевому типу с содержанием карбонатов не более 3,5% от суммы ионов. Широкий диапазон изменений рН воды озера может быть объяснен колебаниями соотношений ионов карбоната и кальция согласно правилу Харди-Эгстера.

Минерализация, гидрохимия, соленое озеро

Короткий адрес: https://sciup.org/148178798

IDR: 148178798

Текст научной статьи Динамика гидрохимических показателей щелочного соленого озера Хилганта (Юго-Восточное Забайкалье)

Юго-Восточное Забайкалье богато многочисленными солоноватыми и содово-солеными озерами [1-3]. Формированию озер благоприятствует мелкосопочный рельеф с большим количеством депрессий и полуаридный климат, способствующий испарительному концентрированию поверхностных вод [4]. Озера, как правило, неглубокие, максимальная глубина крупнейших озер Торейской группы достигает 3-8 м, большинство этих озер имеет глубину около метра [3].

Озеро Хилганта, расположенное в Юго-Восточном Забайкалье, является мелководным щелочным соленым водоемом. Оно стало объектом активных гидрохимических и микробиологических исследований, поскольку особенностями озера являются сезонные и межгодовые изменения физикохимических показателей и развитие в нем многослойного цианобактериального мата [2]. Подобные системы считаются современными аналогами строматолитов, доминировавших на поверхности Земли на протяжении всего докембрия [5]. В этом озере с 1995 по 2008 г. нами проводились гидрохимические исследования, результаты которых обобщены в данной статье.

Объект исследования

Озеро Хилганта (50 о 42 535 с.ш., 115 о 06 086 в.д.) расположено в мелкосопочной степной зоне Юго-Восточного Забайкалья на водоразделе между реками Онон и Ага на высоте 668 м над уровнем моря, в 76 км южнее пос. Агинское. Озеро округлой формы с пологими берегами, бессточное. Максимальная площадь водного зеркала озера в многоводный период достигает 0,3 км2, наибольшая глубина водной толщи – 64 см. В этот период озеро окружено со всех сторон глинисто-песчаным пляжем, ширина которого варьирует от 2 до 4 м. Площадь водосбора составляет примерно 100 км2. С северо-запада озера значительное количество воды поступает по ложбине, по краям которой наблюдается выпадение кальцита в виде плотной белой корки.

Методы исследования

В момент отбора проб были определены: температура – сенсорным электротермометром Prima (Португалия), рН – портативным рН-метром (рНер2, Португалия), окислительно-восстановительный потенциал – портативным измерителем редокс-потенциала ORP (Португалия), общая минерализация – портативным рефрактометром Master-PM (Atago, Япония).

Концентрацию углекислоты и гидрокарбонатов в воде озера и водной вытяжке из донных осадков измеряли титриметрическим методом. Концентрацию ионов Ca2+, Mg2+, K+ и Na+ определяли методом ВЭЖХ на ионном хроматографе «Стайер» с кондуктометрическим детектором (ЗАО Аквилон, РФ). Содержание сульфатов и хлоридов определяли на ионном хроматографе Biotronik (Германия). Органический углерод в донных отложениях и почвах определяли методом мокрого сжигания по Тюрину [6]. Концентрацию кислорода определяли по методу Винклера. Содержание сероводорода определяли в пробе, зафиксированной ацетатом цинка, фотометрическим методом.

Минералогия донных осадков и почвы была изучена при помощи световой микроскопии и рентгеновского анализа. Изотопный состав углерода был определен в виде газообразной формы СО 2 на масс-спектрометре МИ-1201 [7]. Результаты приведены в виде величин дельта 13С в промилле по отношению к общепринятым стандартам PDB (белемнит из формации Пи Ди).

Результаты и обсуждение

Гидрохимия озера Хилганта

Озеро Хилганта, как и большинство мелких озер Юго-Восточного Забайкалья, характеризуется нестабильным водным режимом. Результаты анализов показывают, что ионный состав воды меняется в зависимости от климатических условий. Так, во влажный период (по 1998 г.) вода в озере Хилганта была щелочной (рН 9,5-9,9). Минерализация колебалась от 40 до 45 г/дм3. Вода принадлежала к хло-ридно-сульфатному натриевому типу (табл. 1). Глубина озера составляла 36-40 см. В водной толще происходили суточные колебания сероводорода и кислорода, обусловленные деятельностью фото-трофных и сульфатредуцирующих бактерий [2].

В засушливый период (начиная с 1999 г.) водный режим озера становится неустойчивым. В 1999 и 2000 гг. минерализация воды озера колебалась в пределах 25-56 г/дм3, рН в пределах 9,6-10,0. С 2001 г. колебания минерализации становятся более значительными. В 2005-2007 гг. отмечалось пересыхание озера. В этот период котловина наполнялась водой лишь эпизодически во время дождей. В небольших углублениях на дне озера временами сохранялась вода насыщенного зеленого цвета с доминированием эукариотической зеленой водоросли Dunaliella salina. Минерализация воды в углублениях составляла 200-260 г/дм3, рН 7,2-8,1 [2].

В конце августа и начале сентября 2007 г., в период кратковременных дождей, была изучена динамика физико-химических показателей озера. После разбавления воды озера происходит ее интенсивное испарение. При этом минерализация за 9 дней повысилась с 47 до 170 г/дм3. В результате испарительного концентрирования озерных вод произошло падение рН воды озера с 9,47 до 7,99. Условия в озере изменились от сильно щелочных до практически нейтральных. На обнажившейся поверхности дна происходит выпадение кристаллов блоедита (Na2Mg(SO4)2· 4H2O). Тем не менее тип воды озера остается хлоридно-сульфатным натриевым (табл. 1). Исследования химического состава иловой воды проводились летом 2006 и 2007 гг. в засушливый период. Иловая вода обнаруживалась в раскопках дна озера на глубине 35-80 см. Минерализация составляла 128-155 г/дм3, рН 7,1-7,54. Тип воды – хлоридно-сульфатный натриевый (табл. 1). Примечательно, что водные вытяжки вышележащих более сухих слоев осадков имели более высокие значения рН 8,02-8,64 и более низкую минерализацию (10-19 г/дм3).

Донные отложения озера Хилганта

В водный период в озере формируется цианобактериальный мат толщиной до 2-3 см, покрывающий всю поверхность дна озера. В составе цианобактериального мата доминируют нитчатые цианобактерии Microcoleus chthonoplastes . Содержание органического вещества в микробных матах, отобранных в 1996-1998 гг., составляет 14,8-19,07% [2]. Концентрация углеводов в матах равна 13,114,9%, белков – 6,89-10,8%.

Изотопный состав углерода органического вещества микробных матов в водный период варьирует от -15,6 до -19,21‰. Эти данные показывают, что продуценты цианобактериального мата используют углекислоту – продукт разложения фитопланктона озера и растительного опада, смываемого с водосбора. Соотношение 12С/13С органического вещества донных отложений, отобранных из-под микробного мата, равно -14,8‰. По-видимому, основная часть органического вещества донных отложений является продуктом деструкции микробных матов. Значения дельты 13С карбонатов микробных матов и донных отложений в водный период варьируют от -0,14 до +4,1‰.

Таблица 1

Состав воды озера Хилганта (г/дм3)

Проба

Дата

СО 3 2-

НСО 3 -

Cl-

SO 4 2-

Ca2+

Mg2+

Na+

K+

Сумма

ОМ*

рН

Вода озера (влажный период)

05.07.1995

0,330

1,16

16,6

12,5

0,01

1,53

14, 5

0

46,6

41,5

9,8

Вода озера (засушливый период)

24.08.2007

0,005

0,14

17,9

8,1

0,04

2,17

25, 3

0,2 0

53,8

50

9,0

25.08.2007

0,007

0,14

19,3

7,5

0,04

2,10

26, 2

0,3 0

55,6

46

9,1

31.08.2007

0,050

0,21

50,9

32,5

0,20

8,66

54, 4

0,3 9

147,2

150

8,9

Иловые воды

02.08.2006

0

1,04

53,0

26,8

0,21

8,83

63, 8

0,3 7

154,0

152

7,1

23.08.2007

0

0,34

51,6

25,1

0,28

8,75

56, 2

0,3 3

142,5

155

7,1

31.08.2007

0

0,48

52,0

26,2

0,20

8,49

56, 9

0,4 9

144,7

142

6,9

* ОМ – общая минерализация

В засушливый период на дне озера обнаруживалась плотная корка высохших цианобактериальных матов толщиной около 0,5-1 см с выпадением крупных кристаллов галита (NaCl) и блоедита (Na2Mg(SO4)2·4H2O) на поверхности. Изотопный состав углерода органического вещества корки равен -30,63‰, углерода карбонатов – -8,65‰, что значительно легче значений дельты 13С этих веществ в водный период.

Влажность поверхностной солевой корки составляет 4,7-5,6%. Корка препятствует испарению влаги и иссушению донных осадков, и на глубине в 40-70 см влажность увеличена до 11,60-28,45%. С использованием световой микроскопии и рентгеновского анализа в донных отложениях были выявлены галит, блоедит, полевые шпаты, кварц, трона и незначительное количество кристаллов гипса. В период кратковременных дождей многослойный толстый цианобактериальный мат развиться не успевает. Вместо него формируется тонкий рыхлый цианобактериальный мат с доминированием нитчатых цианобактерий Phormidium sp ., родственных штамму UTCC 487. Изотопный состав углерода органического вещества этого мата равен -27,75‰, углерода карбонатов – -8,21‰. При высыхании озера тонкий цианобактериальный мат отмирает при достижении минерализации озера около 100-150 г/дм3.

Анализ динамики гидрохимических показателей озера, изучение состава почвы, донных отложений и иловых вод позволили выявить общую схему функционирования системы озера и объяснить причину колебаний рН воды озера. Формирование химического состава озера зависит от выветривания и сноса материала с водосборной площади. Кальций перехватывается поверхностным слоем почвы в окрестностях озера и осаждается в виде карбоната кальция. В меньшей степени почвой задерживается магний, что приводит к формированию вокруг озера пятен солончаков магниево-кальциевого состава. Натрий накапливается в озерной котловине, определяя, таким образом, преимущественно натриевый состав озерных вод.

Во влажный период воды озера принадлежат к хлоридно-сульфатному натриевому типу. Карбонаты составляют не более 3.5% от суммы ионов. Тем не менее вода озера является щелочной со стабильно высоким рН, не зависящим от фотосинтетического подщелачивания в течение дня. В засушливый период, в ходе испарительного концентрирования, из щелочного раствора начинают выпадать карбонаты натрия, что приводит к падению рН воды. Затем выпадают сульфаты натрия и магния в виде блоедита, и на финальной стадии высыхания озера выпадает галит.

Колебания значений рН воды озера Хилганта могут быть объяснены изменением концентраций карбонатов и кальция согласно соотношению Харди-Эгстера (2mCa2+ = mHCO 3 - + 2mCO 3 2-) [8]. Во влажный период содержание карбонатов значительно превышает содержание кальция, что приводит к накоплению в воде озера соды и, соответственно, высоким значениям рН. В засушливый период карбонат натрия первым удаляется из раствора и концентрации кальция и карбонатов устанавливаются на одном уровне. Тем не менее их доля относительно хлорида натрия и сульфатов становится очень мала и роль в формировании щелочной системы снижается. рН устанавливается в области нейтральных значений.

В связи с этим обращает на себя внимание сходство состава вод озера Хилганта во влажный период и морской воды, также принадлежащей к хлоридно-сульфатному натриевому типу [9]. Различие в рН между щелочными водами озера Хилганта и нейтральными морскими водами также подчиняется правилу Харди-Эгстера [8]. Из этого можно сделать вывод, что для формирования стабильных щелочных условий достаточно небольших концентраций карбонатов при условии удаления из системы кальция. Если же предположить существование в древности щелочных систем, аналогичных озеру Хилганта, то нужно отметить, что при высыхании они не образовывали эвапоритовых минералов, характерных для содовых озер (карбонат натрия – трона), и в геологической летописи не могли быть идентифицированы как щелочные. Это приводит к следующему выводу – в древности щелочные условия могли иметь намного более широкое распространение, чем представляется сейчас. Например, такими системами могли быть краевые зоны эпиконтинентальных морей Докембрия.

Работа выполнена при финансовой поддержке РФФИ ( 07-04-00651 а , 08-05-98036, 08-05-98038 р _ Сибирь _ а ) Программ Президиума РАН « Молекулярная и клеточная биология » и « Происхождение и эволюция биосферы », Belgian Federal Science Policy Office (BELSPO), Fonds de la recherché scientifique – FNRS ( Бельгия ), интеграционных грантов СО РАН 38 и 95, программ Минобразования и науки РФ РНП 2.1.1/2165, НОЦ Байкал .

Статья научная