The proof of zero singularity isolation in the "non-collinear" case for vector fields of any finite dimension
Автор: Mitin V.G.
Журнал: Вестник Пермского университета. Серия: Математика. Механика. Информатика @vestnik-psu-mmi
Рубрика: Математика
Статья в выпуске: 4 (8), 2011 года.
Бесплатный доступ
This article gives the proof that the zero singular point of a finite-dimensional vector field Ф:Rn?_ Rn with degenerate Frechet derivative of rank r=n-1 is isolated if on the rays of extinction of the linear part the vectors of quadratic part do not belong to the hyper plane according to the range of values of the linear part.
Geometrical methods of nonlinear functional analysis, finite-dimensional vector field, rotation, poincaré index, singularity of vector field, vector method, criteria of isolation
Короткий адрес: https://sciup.org/14729746
IDR: 14729746