Динамическая байесовская сеть и скрытая марковская модель прогнозирования данных IoT для модели машинного обучения с использованием расширенного рекурсивного исключения признаков

Автор: Нойягдам Самад, Баламуралитаран Сундараппан, Говиндан Ведияппан

Журнал: Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование @vestnik-susu-mmp

Рубрика: Программирование

Статья в выпуске: 3 т.15, 2022 года.

Бесплатный доступ

В рамках исследовательской работы разработано слияние данных с учетом контекста с моделью машинного обучения на основе ансамбля (CDF-EMLM) для улучшения обработки данных о здоровье. Эта исследовательская работа сосредоточена на разработке улучшенного слияния данных с учетом контекста и алгоритма эффективного выбора признаков для улучшения процесса классификации для прогнозирования данных здравоохранения. Первоначально данные с устройств интернета вещей (IoT) собираются и предварительно обрабатываются, чтобы сделать их понятными для обработки слияния. В этой работе построен метод двойной фильтрации для предварительной обработки данных, который пытается пометить немаркированные атрибуты в собранных данных, чтобы можно было точно выполнить объединение данных. Кроме того, динамическая байесовская сеть (DBN) является хорошим компромиссом для манипулирования и становится инструментом для операций CADF. Здесь проблема вывода решается с использованием скрытой марковской модели (HMM) в модели DBN. После этого анализ основных компонентов (PCA) используется для извлечения признаков, а также для уменьшения размеров. Выбор признаков выполняется с использованием метода расширенного рекурсивного исключения признаков (ERFE) для устранения нерелевантных данных в наборе данных. Наконец, эти данные изучаются с использованием модели машинного обучения на основе ансамбля (EMLM) для проверки производительности слияния данных.

Еще

Динамическая байесовская сеть, скрытая марковская модель, iot данные здравоохранения, машинное обучение, анализ главных компонентов, расширенное рекурсивное устранение признаков

Короткий адрес: https://sciup.org/147238545

IDR: 147238545   |   DOI: 10.14529/mmp220308

Статья научная