Educational application of artificial intelligence for diagnosing the state of railway tracks

Автор: Dubljanin D., Markovi F., Dimi G., Vukovi D., Petkovi M., Mosurovi L.

Журнал: International Journal of Cognitive Research in Science, Engineering and Education @ijcrsee

Рубрика: Original research

Статья в выпуске: 2 vol.12, 2024 года.

Бесплатный доступ

The aim of the work is to present an innovative solution based on artificial intelligence for examining the condition of railway tracks in real time. The system, based on fuzzy logic and metaheuristics such as Fuzzy Logic, Neural Networks and Bee Behavior Optimization, combines hardware and software to provide reliable data on the technical characteristics of the railway. Installed in rail vehicles, hardware collects this data, while software uses artificial intelligence to improve operational reliability and safety. The aforementioned technology is not only useful for infrastructure diagnostics, but also for urban railways such as trams and metros, ensuring a high level of passenger safety. The introduction of artificial intelligence in the railway sector is a key step towards modernisation, improving efficiency, resource optimization and safety. Although still in its infancy, artificial intelligence already shows great potential in transforming the railway sector towards a more efficient, reliable and sustainable future.

Еще

Hardware, artificial intelligence, intelligent measurement system, mmc/sd cards, educational processes, sensors, security

Короткий адрес: https://sciup.org/170206415

IDR: 170206415   |   DOI: 10.23947/2334-8496-2024-12-2-467-476

Список литературы Educational application of artificial intelligence for diagnosing the state of railway tracks

  • Bauranov, A. (2016). The Port of Piraeus - Opportunity for Railways in South East Europe. Retrieved from https://www.global-railwayreview.com/article/29672/port-piraeus-railways-south-east-europe/
  • Betke, K. (2000). TheNMEA-0183Protocol. Retrieved from https://www.tronico.fi/OH6NT/docs/NMEA0183.pdf
  • Besinovic, N., Tang, R., Lin, Z., Liu, R., Tang, T., Donato, L.D., Vittorini, V., Wang, Z., Flammini, F., Pappaterra, M.J., Goverde, R.M.P. (2021). Deliverable D1.2: Summary of existing relevant projects and state-of-the-art of AI application in railways. RAILS Project. https://doi.org/10.13140/RG.2.2.11353.03686
  • Centarza istrazivanje nesreca u saobracaju (2018). Sektorza istrazivanje nesreca u zeleznickom saobracaju i medunarodnu saradnju,
  • Godisnji izvestaj za 2017. godinu, br. 340-00-4/2018-2-40-1.
  • Retrieved from https://www.cins.gov.rs/doc/ zeleznicki-saobracajZGodisnji-Izvestaj-za-2017godinu.pdf
  • Compass Lexecon and Karanovic & Partners (2020). Trziste prevoza robe u zeleznickom saobracaju u Republici Sr-biji. Izvestaj. https://www.kzk.gov.rs/kzk/wp-content/uploads/2020/08/Tr%C5%BEi%C5%A1te-prevoza-robe-u-%C5%BEelezni%C4%8Dkom-saobra%C4%87aju-u-Republici-Srbiji.pdf
  • Direkcija za zeleznice, Republika Srbija (2023). Izvestaj Direkcije za zeleznice o stanju bezbednosti u zeleznickom saobracaju za 2022. godinu. Retrieved from https://www.raildir.gov.rs/doc/izvestaji/Godisnji_izvestaj_o_bezbednosti_za_2022_ godinu.pdf
  • Espinosa, F., García, J.J., Hernández, A., Mazo, M., Ureña, J., Jiménez, J.A., Fernández, I., Pérez, C., García, J.C. (2018). Advanced monitoring of rail breakage in double-track railway lines by means of PCA techniques. Applied Soft Computing, 63, 1-13. https://doi.org/10.1016/j.asoc.2017.11.009
  • Fragnelli, V., Sanguineti S. (2014). A game theoretic model for re-optimizing a railway timetable. European Transport Research Review, 6(2), 113-125. https://doi.org/10.1007/s12544-013-0116-y
  • Gibert, X., Patel, V.M., Chellappa, R. (2015). Robust Fastener Detection for Autonomous Visual Railway Track Inspection. IEEE Winter Conference on Applications ofComputer Vision. https://doi.org/10.1109/WACV.2015.98
  • Hronik, R.H. (1970). Apparatus for high-speed measurement of track geometry, patent. https://patentimages.storage.googlea-pis.com/ed/20/e4/3b40165f0510e3/US3517307.pdf
  • Hodas, S., Izvoltova, J., Chromcak, J., Bacova, D. (2022). Monitoring the Geometric Position of Transition Zones to Increase the Quality and Safety of Railway Lines, Appllied Sciences, 12, 6038. https://doi.org/10.3390/app12126038
  • Institut za standardizaciju Srbije (2019). SRPS EN 13848-1:2019. https://iss.rs/sr_Cyrl/project/show/iss:proj:62968 Institut za standardizaciju Srbije (2017). SRPS EN 13848-5:2017. https://iss.rs/sr_Cyrl/project/show/iss:proj:60555
  • International Railway Yournal (2019). The future of intelligence is artificial, https://www.railjournal.com/in_depth/future-intelli-gence-artificial/
  • Ministarstvo gradevinarstva, saobracaja i infrastructure. Retrievedfrom https://www.mgsi.gov.rs/cir/projekti/term/195 Railway Gazette International. https://www.railwaygazette.com/
  • Saleh, S. (2016). Spherebot Design and testing of a robot inside of a sphere. Examensarbete inom teknik. https://kth.diva-portal.org/smash/get/diva2:957832/FULLTEXT01.pdf
  • Shafieenejad, I., Rouzi, E.D., Sardari, J., Araghi, M.S., Esmaeili, A., Zahedi, S. (2021). Fuzzy logic, neural-fuzzy network and honey bees algorithm to develop the swarm motion of aerial robots. Evolving Systems, 13, 319-330, https://doi. org/10.1007/s12530-021-09391-4
  • Sreenivvas, U., Drakshayani, E., Basha, D., Vardhan, M.H., Jhansi, Y.S., Naik, P.B. (2023). Multi-functional blind stick by using solar charging system. International Research Journal of Engineering and Technology, 10 (3), 1282-1287, Retrieved from https://www.irjet.net/archives/V10/i3/IRJET-V10I3205.pdf
  • Tararychkin, I.A. (2020). Selection of network structures of pipeline systems resilient to mixed damage. Dependability, 20(2), 12-17. https://doi.org/10.21683/1729-2646-2020-20-2-12-17
  • Tang, R., Donato, L.D., Besinovic, N., Flammini, F., Goverde, R.M.P., Lin. Z., Liu, R., Tang, T, Vittorini, V., Wang, Z. (2022). A literature review of Artificial Intelligence applications in railway systems. Transportation Research Part C 140, 103679, https://doi.org/10.1016Zj.trc.2022.103679
  • Uputstvo o postupku verifikacije proizvoda i proveri podobnosti proizvodaca kocne opreme ("SI. glasnik Zajednice JZ", br. 6/01). https://www.srbcargo.rs/sr/biblioteka-propisa/?script=lat
  • Yaman, O., Karakose, M., Akin, E. (2017). A Vision Based Diagnosis Approach for Multi Rail Surface Faults Using Fuzzy Classification in Railways. International Conference on Computer Science and Engineering. https://doi.org/10.1109/ UBMK.2017.8093511
  • Yazawa, E. (2003). Track inspection technologies, Railway Technology Avalanche, 1(1), 3. https://www.rtri.or.jp/eng/publish/ newsletter/pdf/01/RTA-01.pdf
  • Zohari, M.H.B., Nazri M.F.B.M. (2021). GPS Based Vehicle Tracking System. International Journal of Scientific & Technology Research, 10(04), 278-282. https://www.researchgate.net/publication/352559892_GPS_Based_Vehicle_Track-ing_System
Еще
Статья научная