Effect of adhesion additive and nature of filler on interfacial interaction and fatigue parameters of asphalt mastic

Автор: Gorbatova V.N., Gordeeva I.V., Dudareva T.V., Krasotkina I.A.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: The results of the specialists’ and scientists’ researches

Статья в выпуске: 5 Vol.16, 2024 года.

Бесплатный доступ

Introduction. The effect of adhesion additive and nature of filler on fatigue life and interfacial interaction in mastic is analyzed in this paper. Materials and methods of research. Frequency sweep from 0.1 to 100 rad/s at strain 0.05% at temperatures from 30 to –10°С with a step 10°С and cyclic tests (LAS test) at temperatures from 16 to 1°С with a step 3°С for bitumen grade BND 100/130 and mastics based on it, containing fillers of different nature, were performed on the dynamic shear rheometer. Mastics were prepared by mixing bitumen (3 min; 160°С and 600 rpm) and filler (filler volume fraction – 0.275). Adhesion additive in an amount of 0.7%, was introduced into bitumen before the filler to investigate the effect of AD on the properties of bitumen and AB. The damage characteristic curve under cyclic loads was calculated using two models of VECD theory (Viscoelastic Continuum Damage Modeling System): dissipated strain energy and pseudo-strain energy. Results and Discussion. The influence of nature and properties of filler, adhesive additive, temperature and frequency of tests on the parameter of interfacial interaction K-B-G* and thickness of adsorbed layer has been investigated. The intensity of damage in the specimen under cyclic loads and the behavior of fatigue parameters as a function of test temperature at two variants of determining the parameter α have been analyzed. Conclusion. It is shown that an increase in the interfacial layer thickness in asphalt mastic leads to an increase in their resistance to damage accumulation (Damage Intensity) during fatigue testing (LAS), and lowers the rate of pseudo-deformation energy growth.

Еще

Mastic, filler, interfacial interaction, adsorbed layer thickness, fatigue parameters

Короткий адрес: https://sciup.org/142242275

IDR: 142242275   |   DOI: 10.15828/2075-8545-2024-16-5-415-430

Список литературы Effect of adhesion additive and nature of filler on interfacial interaction and fatigue parameters of asphalt mastic

  • Kolbanovskaya A.S., Mikhailov V.V. Road bitumens. Moscow: Transportation; 1973. (In Russ.)
  • Pyrig Ya.I. A review of methods for evaluating the adhesion of bitumen to stone materials // Vísnik KHNADU. 2019; 85:73-85. (In Russ.) https://doi.org/10.30977/BUL.2219-5548.2019.85.0.73
  • Cardone F., Frigio F., Ferrotti G., Canestrar F. Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics. // Journal of Traffic and Transportation Engineering (English Edition). 2015; 2(6):373–381. https://doi.org/10.1016/j.jtte.2015.06.003
  • Chen M., Javilla B., Hong W., Pan C., Riara M., Mo L. Rheological and Interaction Analysis of Asphalt Binder, Mastic and Mortar // Materials. 2019; 12 (1):128. https://doi.org/10.3390/ma12010128
  • Guo M., Tan Y. Interaction between asphalt and mineral fillers and its correlation to mastics’viscoelasticity // International Journal of Pavement Engineering. 2021; 22(1):1–10. https://doi.org/10.1080/10298436.2019.1575379
  • Guo M., Bhasin A., Tan Y. Effect of mineral fillers adsorption on rheological and chemical properties of asphalt binder // Construction and Building Materials. 2017; 141:152–159. https://doi.org/10.1016/j.conbuildmat.2017.02.051
  • Palierne J.F. Linear rheology of viscoelastic emulsions with interfacial-tension // Rheologica Acta. 1990; 29(3):204–214.
  • Hintz C., Velasquez R., Johnson C., Bahia H. Modification and validation of linear amplitude sweep test for binder fatigue specification // Transportation Research Record Journal of the Transportation Research Board. 2011; 2207:99–106. https://doi.org/10.3141/2207-13
  • Riccardi C., Falchetto A.C., Wistuba M.P. Comparison of fatigue test methods on asphalt mastic. In book: Functional Pavement Design. Proceedings of the 4th Chinese-European Workshop on Functional Pavement Design. 2016. ISBN 9781138029248.
  • Christensen D.W., Tran N. Relationships Between the Fatigue Properties of Asphalt Binders and the Fatigue Performance of Asphalt Mixtures. NCHRP RESEARCH REPORT 982. 2022. Washington, DC. ISBN 978-0-309- 09342-2. https://doi.org/10.17226/26302
  • Schapery R. A. A theory of mechanical behavior of elastic media with growing damage and other changes in structure // Journal of the Mechanics and Physics of Solids. 1990; 38(2):215–253. https://doi.org/10.1016/0022-5096(90)90035-3
  • AASHTO T391-20. Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep. Washington, DC: AASHTO
  • Cao W., Wang W. New comprehensive analysis framework for fatigue characterization of asphalt binder using the Linear Amplitude Sweep test // Construction and Building Materials. 2018; 171:1–12. https://doi.org/10.1016/j.conbuildmat.2018.03.125
  • Zhang H., Shen K., Xu G., Tong J., Wang R., Cai D., Chen X. Fatigue resistance of aged asphalt binders: An investigation of different analytical methods in linear amplitude sweep test // Construction and Building Materials. 2020; 241:118099. https://doi.org/10.1016/j.conbuildmat.2020.118099
  • Safaei F., Castorena C., Kim Y.R. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling // Mechanics of Time-Dependent Materials. 2016; 20:299-323. https://doi.org/10.1007/s11043-016-9304-1
  • Chen H., Bahia H.U. Modelling effects of aging on asphalt binder fatigue using complex modulus and the LAS test // International Journal of Fatigue. 2021; 146:106150. https://doi.org/10.1016/j.ijfatigue.2021.106150
  • Wang C., Castorena C., Zhang J., Kim Y.R. Unified failure criterion for asphalt binder under cyclic fatigue loading. // Road Materials and Pavement Design. 2015; 16 (2):125–148. https://doi.org/10.1080/14680629.2015.1077010
  • Underwood B.S. A continuum damage model for asphalt cement and asphalt mastic fatigue // International Journal of Fatigue. 2016; 82(3):387-401. https://doi.org/10.1016/j.ijfatigue.2015.08.020
  • AASHTO TP101-14 Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep.
  • GOST 33133-2014 Dorogi avtomobil’nyye obshchego pol’zovaniya. Bitumy neftyanyye dorozhnyye vyazkiye. Tekhnicheskiye usloviya. (In Russ.)
  • Metodika izmereniy gruppovogo khimicheskogo sostava tyazhelykh nefteproduktov metodom zhidkostnoadsorbtsionnoy khromatografii s gradiyentnym vytesneniyem. Ufa. 2014. 18 s. (In Russ.)
  • GOST R 52129-2003 Poroshok mineral’nyy dlya asfal’tobetonnykh i organomineral’nykh smesey. Tekhnicheskiye usloviya. (In Russ.)
  • International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry, Subcommittee on Characterization of Porous Solids: “Recommendations for the characterization of porous solids (Technical Report)” // Pure and Applied Chemistry. 1994; 66(8):1739–1758.
  • Sheidaei M., Gudmarsson A. Sample preparation techniques on dynamic shear rheometer testing: round robin tests on bitumen // Road Materials and Pavement Design. 2024; 25(3):474-491. https://doi.org/10.1080/14680629.2023.2213775
  • Frolov I.N., Firsin A.A., Yusupova T.N., Okhotnikova E.S., Ziganshin M.A. Dynamics of formation of asphalt microstructure according to modulated differential scanning calorimetry data // Petroleum Chemistry. 2017; 57(12):1002-1006. https://doi.org/10.1134/S0965544117120039
  • Zhang J., Sabouri M., Guddati M., Kim Y. Development of a failure criterion for asphalt mixtures under fatigue loading // Road Materials and Pavement Design. 2013; 14(2):1-15. https://doi.org/10.1080/14680629.2013.812843
Еще
Статья научная