Effect of high salt stress on germination and growth of some varieties of common beet
Автор: Hajiyeva I.
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Сельскохозяйственные науки
Статья в выпуске: 5 т.10, 2024 года.
Бесплатный доступ
Information is provided on soil salinization as the most common abiotic stress that reduces the productivity and quality of agricultural plants. Salt stress is associated with lipid peroxidation in cell membranes, DNA damage, protein denaturation, carbohydrate oxidation, pigment breakdown and disruption of enzymatic activity, as well as metabolic adaptations, including primarily the accumulation of osmolytes. The growth of higher plants in saline soil depends on the salt tolerance of the plant species. Reduced plant growth due to salinity includes a reduction in plant leaf area. A pot experiment plant materials was carried out based on investigate the effect of salt stress on growth and state stomatal of three sugar beet ( Beta vulgaris ) cultivars, Cooper, Tarifa and Taltos which import from Denmark. Plants were harvested after 30, 45 and 60 days of salt treatment and were separated into leaf lamina, petioles, stem, and roots.
Osmolytes, plant growth, soils, salt stress, sugar beet
Короткий адрес: https://sciup.org/14130450
IDR: 14130450 | DOI: 10.33619/2414-2948/102/25
Список литературы Effect of high salt stress on germination and growth of some varieties of common beet
- Rouphael, Y., Petropoulos, S. A., Cardarelli, M., & Colla, G. (2018). Salinity as eustressor for enhancing quality of vegetables. Scientia horticulturae, 234, 361-369. https://doi.org/10.1016/j.scienta.2018.02.048
- Shahid, M. A., Sarkhosh, A., Khan, N., Balal, R. M., Ali, S., Rossi, L., ... & Garcia- Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10(7), 938. https://doi.org/10.3390/agronomy10070938
- Ahmed, S., Ahmed, S., Roy, S. K., Woo, S. H., Sonawane, K. D., & Shohael, A. M. (2019). Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4(1), 361-373. https://doi.org/10.1515/opag-2019-0033
- Rogel, J. A., Ariza, F. A., & Silla, R. O. (2000). Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands, 20(2), 357-372. https://doi.org/10.1672/0277-5212(2000)020[0357:SSAMGA]2.0.CO;2
- Rubio, J. S., Garcia-Sanchez, F., Rubio, F., & Martínez, V. (2009). Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+fertilization. Scientia Horticulturae, 119(2), 79-87. https://doi.org/10.1016/j.scienta.2008.07.009
- Giordano, M., Petropoulos, S. A., & Rouphael, Y. (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture, 11(5), 463. https://doi.org/10.3390/agriculture11050463
- Soltabayeva, A., Ongaltay, A., Omondi, J. O., & Srivastava, S. (2021). Morphological, physiological and molecular markers for salt-stressed plants. Plants, 10(2), 243. https://doi.org/10.3390/plants10020243
- Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual review of plant biology, 49(1), 249-279. https://doi.org/10.1146/annurev.arplant.49.1.249
- Saibi, W., Feki, K., Ben Mahmoud, R., & Brini, F. (2015). Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. Planta, 242, 1187-1194. https://doi.org/10.1007/s00425-015-2351-z
- Hossain, M. S., Persicke, M., ElSayed, A. I., Kalinowski, J., & Dietz, K. J. (2017). Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. Journal of Experimental Botany, 68(21-22), 5961-5976. https://doi.org/10.1093/jxb/erx388
- Bybordi, A. (2010). The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 128-133. https://doi.org/10.15835/nbha3813572
- Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of experimental botany, 55(407), 2365-2384. https://doi.org/10.1093/jxb/erh269
- Kaur, G., & Asthir, B. J. B. P. (2015). Proline: a key player in plant abiotic stress tolerance. Biologia plantarum, 59, 609-619. https://doi.org/10.1007/s10535-015-0549-3
- Al-Khateeb, S. A. (2006). Effect of salinity and temperature on germination, growth and ion relations of Panicum turgidum Forssk. Bioresource Technology, 97(2), 292-298. https://doi.org/10.1016/j.biortech.2005.02.041
- De Herralde, F., Biel, C., Save, R., Morales, M. A., Torrecillas, A., Alarcon, J. J., & Sánchez-Blanco, M. J. (1998). Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science, 139(1), 9-17. https://doi.org/10.1016/S0168-9452(98)00174-5
- Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and experimental Botany, 47(1), 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
- Fan, H. F., Du, C. X., Ding, L., & Xu, Y. L. (2013). Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta physiologiae plantarum, 35(9), 2707-2719. https://doi.org/10.1007/s11738-013-1303-0
- Pasternak, T., Rudas, V., Potters, G., & Jansen, M. A. (2005). Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environmental and Experimental Botany, 53(3), 299-314. https://doi.org/10.1016/j.envexpbot.2004.04.009
- Hester, M. W., Mendelssohn, I. A., & McKee, K. L. (2001). Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. Environmental and Experimental Botany, 46(3), 277-297. https://doi.org/10.1016/S0098-8472(01)00100-9