Effect of laser modification on composite films with nanodispersed SiO2

Автор: Natalia I. Cherkashina, Vyacheslav I. Pavlenko, Andrey I. Gorodov, Daria A. Ryzhikh, Elena V. Forova

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Application of nanomaterials and nanotechnologies in construction

Статья в выпуске: 2 Vol.15, 2023 года.

Бесплатный доступ

Introduction. This research is aimed at studying the effect of laser modification on composite films obtained on the basis of polyimide track (nuclear) membranes and filled with nanodispersed SiO2; to change their optical and structural properties. Materials and research methods. Polyimide track (nuclear) membranes were used as a polymer matrix. Track diameter is 200 nm, membrane thickness is 25 μm. The tracks were filled with nanosized SiO2 by hydrolysis of tetraethoxysilane in the presence of track membranes. For composite film surface modification, we used ytterbium pulsed fiber laser Minimarker 2-20 A4 PA. We studied the change in the surface microscopy of composite films, their optical density, IR-Fourier spectra and surface wettability depending on laser treatment. Results and discussion. The authors have found the possibility of creating a composite film based on a polyimide track (nuclear) membrane and nanodispersed SiO2 by hydrolysis of tetraethoxysilane in the presence of a membrane. It is shown with the energy dispersive analysis method that silicon oxide has completely filled the pore volume of the track membrane. Laser modification of the composite material surface (composite film) leads to an increase in the contact angle of wetting from θ = 66.75 ± 1.55° to θ = 101.52 ± 3.03°. Thus, the material acquires hydrophobic properties. Also, the laser films modification has a positive effect on the transmittance of the films, namely, this coefficient increases. The greatest change is observed in the infrared region of еmitted spectrum, the average increase in transmission is +70.48%. Conclusion. The obtained results of the study are of great importance for understanding the mechanisms of creating composite films with improved optical properties, which can later be used to create composite films with desired optical properties for various applications.


Composite film, track membrane, nanosized SiO2, laser processing, optical properties, modification, contact angle of wetting

Короткий адрес: https://sciup.org/142237971

IDR: 142237971   |   DOI: 10.15828/2075-8545-2023-15-2-152-163

Список литературы Effect of laser modification on composite films with nanodispersed SiO2

  • Cherkashina N.I., Pavlenko V.I., Noskov A.V. Synthesis and property evaluations of highly filled polyimide composites under thermal cycling conditions from −190оC to +200оC. Cryogenics. 2019; 104: 102995. https://doi.org/10.1016/j.cryogenics.2019.102995
  • Zabegaeva O., Sapozhnikov D., Vygodsky Ya. Molecular composites based on polyimides. High-molecular compounds. 2020; 2: 186–199. https://doi.org/10.31857/S230811472002017X
  • Ma J., Liu X., Wang R., Lu C., Wen X., Tu G. Research Progress and Application of Polyimide-Based Nanocomposites. Nanomaterials. 2023; 13(4): 656. https://doi.org/10.3390/nano13040656
  • Malinský P, Romanenko O, Havránek V, Cutroneo M, Novák J, Štěpanovská E, Mikšová R, Marvan P, Mazánek V, Sofer Z, Macková A. Graphene Oxide and Polymer Humidity Micro-Sensors Prepared by Carbon Beam Writing. Polymers. 2023; 15(5): 1066. https://doi.org/10.3390/polym15051066
  • Yang S.-Y. (Ed.) Advanced Polyimide Materials: Synthesis, Characterization, and Applications ; Elsevier: Saint Louis, MI, USA; 2018.
  • Gouzman I., Grossman E., Verker R., Atar N., Bolker A., Eliaz N. Advances in Polyimide-Based Materials for Space Applications. Adv Mater. 2019; 31(18): 1807738. https://doi.org/10.1002/adma.201807738
  • Iwasa R., Suizu T., Yamaji H., Yoshioka T., Nagai K. Gas separation in polyimide membranes with molecular sieve-like chemical/physical dual crosslink elements onto the top of surface. Journal of Membrane Science. 2018; 550: 80-90. https://doi.org/10.1016/j.memsci.2017.12.064
  • Radzymińska-Lenarcik E, Pyszka I, Urbaniak W. The Use of Polymer Membranes for the Recovery of Copper, Zinc and Nickel from Model Solutions and Jewellery Waste. Polymers. 2023; 15(5): 1149. https://doi.org/10.3390/polym15051149
  • Kozlovskiy A., Borgekov D., Kenzhina I. et al. PET Ion-Track Membranes: Formation Features and Basic Applications. Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics. 2019; 221: 461-479. https://doi.org/10.1007/978-3-030-17759-1_31
  • Pe´py G., Boesecke P., Kuklin A., et al. Cylindrical nanochannels in ion-track polycarbonate membranes studied by small-angle X-ray scattering. Applied Crystallography. 2007; 40: 388-392. https://doi.org/10.1107/S0021889807000088
  • Tianji Ma, Jean-Marc Janot, Sebastien Balme Track-Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods. 2020; 4 (9): 2000366. https://doi.org/10.1002/smtd.202000366
  • Jian-Xin Yang, Zhi-Bo He, Shi-Lun Guo Identification and harmfulness analysis of solid particles contained in medical injections and their removal by nuclear track membranes. Perspectives in Science. 2019; 12: 100399. https://doi.org/10.1016/j.pisc.2019.100399
  • Nana Jin, Li Xue, Ying Ding, Yingjia Liu, Fan Jiang, Ming Liao, Yanbin Li, Jianhan Lin A microfluidic biosensor based on finger-driven mixing and nuclear track membrane filtration for fast and sensitive detection of Salmonella. Biosensors and Bioelectronics. 2023; 220: 114844. https://doi.org/10.1016/j.bios.2022.114844
  • Zhi-Bo He, S.-L. Guo, Applications of Nuclear Track Membranes to Filtration of Medical Injections and Various Transfusions to Remove Solid Particles. Physics Procedia. 2015; 80: 131-134. https://doi.org/10.1016/j.phpro.2015.11.081
  • Bosykh E., Sokhoreva V., Pichugin V. Investigation of the possibility of using nuclear track membranes for ophthalmology. Membranes and membrane technologies. 2014; 4 (4): 267.
  • Calvo J.I., Bottino A., Capannelli G., Hernández A. Comparison of liquid–liquid displacement porosimetry and scanning electron microscopy image analysis to characterise ultrafiltration track-etched membranes. Journal of Membrane Science. 2004; 239 (2): 189-197. https://doi.org/10.1016/j.memsci.2004.02.038
  • Vinogradov I., Nechaev A., Rossow A. Composite membranes based on a track membrane and chitosan nanoframeworks. Science of Russia: Goals and objectives. Collection of scientific papers based on the materials of the XXVII International Scientific and Practical Conference. June 10, 2021. 2021; 152. https://doi.org/10.18411/sr-10-06-2021-26
  • Khlebnikov N.A., Polyakov E.V., Borisov S.V., Shepatkovskii O.P., Krasil’nikov V.N. Application of Nanocomposite Track Membranes for Electron Microscopy Samples Preparation. Advanced Materials Research. 2014; 1082: 51–56. https://doi.org/10.4028/www.scientific.net/amr.1082.51
  • Al Harby NF, El-Batouti M, Elewa MM. Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalability and their Health and Environmental Impacts: A Review. Nanomaterials. 2022; 12(20): 3637. https://doi.org/10.3390/nano12203637
  • Wu T., Dong J., Gan F., Fang Y., Zhao X., Zhang Q. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups. Applied Surface Science. 2018; 440: 595–605. https://doi.org/10.1016/j.apsusc.2018.01.132
  • Yin J, Mao D, Fan B. Copolyamide-Imide Membrane with Low CTE and CME for Potential Space Optical Applications. Polymers. 2021; 13(7): 1001. https://doi.org/10.3390/polym13071001
  • Mao D., Lv G., Gao G., Fan B. Fabrication of polyimide films with imaging quality using a spin-coating method for potential optical applications. Journal of Polymer Engineering. 2019; 39(10): 917–925. https://doi.org/10.1515/polyeng-2019-0177
  • Jiang H., Xu L., Chen G.,Fang X. Aqueous Solution Blending Route for Preparing Flexible and Antistatic Polyimide/Carbon Nanotube Composite Films with Core-Shell Structured Polyimide/Graphene Microspheres. Polym. Compos. 2022; 43: 6062–6073.
  • Zhou X., Ding C., Cheng C., Liu S., Duan G., Xu W., Liu K., Hou H. Mechanical and Thermal Properties of Electrospun Polyimide/Rgo Composite Nanofibers Via in-Situ Polymerization and in-Situ Thermal Conversion. European Polymer Journal. 2020; 141: 110083. https://doi.org/10.1016/j.eurpolymj.2020.110083
  • Mainnikova N., Yarmizina A., Trofimov D., Kostromina N., Kravchenko T., Yakovleva K. Investigation of the effect of carbon nanofillers on the properties of composites based on polypropylene. Plastic masses. 2020; 3-4: 23-25. https://doi.org/10.35164/0554-2901-2020-3-4-23-25
  • Kozlov G., Dolbin I. Comparative analysis of the effectiveness of carbon nanotubes and graphene in the reinforcement of polymer nanocomposites. Journal of technical physics. 2020; 62(8): 1240-1243. https://doi.org/10.21883/FTT.2020.08.49608.078
  • Huo M., Hu Y., Xue Q., Huang J, Xie G. Solution-Processed Large-Area Organic/Inorganic Hybrid Antireflective Films for Perovskite Solar Cell. Molecules. 2023; 28(5): 2145. https://doi.org/10.3390/molecules28052145
  • Pavlenko V.I., Zabolotny V.T., Cherkashina N.I., Edamenko O.D. Effect of vacuum ultraviolet on the surface properties of high-filled polymer composites. Inorganic Materials: Applied Research. 2014; 5(3): 219–223. https://doi.org/10.1134/S2075113314030137
  • Hsiao Y.-S., Chang-Jian C.-W., Uang T.-Y., Chen Y.-L.. Huang C.-W., Huang J.-H., Wu N.-J., Hsu S.-C., Chen C.-P. Lightweight Flexible Polyimide-Derived Laser-Induced Graphenes for High-Performance Thermal Management Applications. Chemical Engineering Journal. 2023; 451(3): 138656. https://doi.org /10.1016/j.cej.2022.138656
  • Pavlenko V.I., Cherkashina N.I. Synthesis of hydrophobic filler for polymer composites. International Journal of Engineering and Technology. 2018; 7(2): 493–495. https://doi.org /10.14419/ijet.v7i2.23.15341
  • Xing S., Pan Z. Wu X., Chen H., Lv X., Li P., Liu J., Zhai J. Enhancement of Thermal Stability and Energy Storage Capability of Flexible Ag Nanodot/Polyimide Nanocomposite Films Via in Situ Synthesis. Journal of Materials Chemistry. 2020; 8(36): 12607–12614. https://doi.org /10.1039/D0TC02516J
  • Yadav D., Borpatra G. M., Karki S., Ingole P.G. A Novel Approach for the Development of Low-Cost Polymeric Thin-Film Nanocomposite Membranes for the Biomacromolecule Separation. ACS Omega. 2022; 7(51): 47967–47985. https://doi.org /10.1021/acsomega.2c05861
  • Borpatra Gohain M., Karki S., Yadav D., Yadav A., Thakare N.R., Hazarika S., Lee H.K., Ingole P.G. Development of Antifouling Thin-Film Composite/Nanocomposite Membranes for Removal of Phosphate and Malachite Green Dye. Membranes. 2022; 12(8): 768. https://doi.org/10.3390/membranes12080768
  • Nam V.B., Shin J., Choi A., Choi H., Ko S.H., Lee D. High-Temperature, Thin, Flexible and Transparent Ni-Based Heaters Patterned by Laser-Induced Reductive Sintering on Colorless Polyimide. Journal of Materials Chemistry. 2021; 9(17): 5652–5661. https://doi.org/10.1039/D1TC00435B
  • Zhang Y., Ma Z., Ruan K., Gu J. Multifunctional Ti3C2Tx-(Fe3O4/Polyimide) Composite Films with Janus Structure for Outstanding Electromagnetic Interference Shielding and Superior Visual Thermal Management. Nano Research. 2022; 15(6): 5601–5609. https://doi.org/10.1007/s12274-022-4358-7
  • Jun Xu, Guojun Zhang, Congyi Wu, Weinan Liu, Tian Zhang, Yu Huang, Youmin Rong Organic solvent assisted laser processing of transparent polymer films based on the swelling and penetration behavior. Optics & Laser Technology. 2022; 150: 107937. https://doi.org/10.1016/j.optlastec.2022.107937
  • Yastrebinsky R.N., Pavlenko V.I., Matukhin P.V., Cherkashina N.I., Kuprieva O.V. Modifying the surface of iron-oxide minerals with organic and inorganic modifiers. Middle East Journal of Scientific Research. 2013; 18(10): 1455–1462. https://doi.org/10.5829/idosi.mejsr.2013.18.10.7098
  • Anwer G., Acherjee B. Laser polymer welding process: Fundamentals and advancements. Materials Today: Proceedings. 2022; 61(1): 34-42. https://doi.org/10.1016/j.matpr.2022.03.307
  • Matyukhin P.V., Pavlenko V.I., Yastrebinsky R.N., Cherkashina N.I. The high-energy radiation effect on the modified iron-containing composite material. Middle East Journal of Scientific Research. 2013; 17 (9): 1343–1349. https://doi.org/10.5829/idosi.mejsr.2013.17.09.70100
  • Mishra L., Mishra D., Mahapatra T.R. Optimization of process parameters in Nd:YAG laser micro-drilling of graphite/epoxy based polymer matrix composite using Taguchi based Grey relational analysis. Materials Today: Proceedings. 2022; 62(14): 7467-7472. https://doi.org/10.1016/j.matpr.2022.03.501
  • Dahmen M., Vedder C., Baek S., Stollenwerk J. Dual-beam laser-based processing of tribological polymer coatings. Procedia CIRP. 2022; 11: 257-260. https://doi.org/10.1016/j.procir.2022.08.061
Статья научная