Effect of the active powder of discretely devulcanized rubber on bitumen properties at low temperatures

Автор: Viktoria N. Gorbatova, Irina V. Gordeeva, Tatyana V. Dudareva, Irina A. Krasotkina, Vadim G. Nikol'skii, Victor M. Egorov

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: The results of the specialists’ and scientists’ researches

Статья в выпуске: 1 Vol.15, 2023 года.

Бесплатный доступ

Introduction. In the article the use of powder elastomeric modifier capable of rapid breakdown into micro- and nanofragments upon contact with hot bitumen to improve the low-temperature properties of bitumen is presented. The indicators of resistance to cracking are determined by various methods and their dependence on the thermal history of the samples. Methods and Materials. At temperatures up to –36оC the oscillatory rheological tests (4-mm DSR test) of RTFO-aged samples of bitumen BND 60/90 and modified binder (MB) which contain the active powder of discretely devulcanized rubber (APDDR) produced by high-temperature shear-induced grinding from the crumb rubber of worn tires have been conducted. MB was prepared by mixing bitumen (3 min; 160оC and 600 rpm) with 12.5 wt.% APDDR. Results and Discussion. The effect of the test parameters on the rheological parameters has been studied. Structural transitions in bitumen and MB by methods of differential scanning calorimetry (DSC) and the cracking temperature of the same samples in static conditions in the ABCD test were detected. It is revealed: a decrease in the temperature of actual cracking of the MB sample compared to bitumen. Conclusion. It is shown that APDDR as a modifier affects the structure of bitumen and reduces the temperature sensitivity of bitumen to external influences.

Еще

Bitumen, APDDR, low-temperature cracks, glass transition

Короткий адрес: https://sciup.org/142235808

IDR: 142235808   |   DOI: 10.15828/2075-8545-2023-15-1-72-83

Список литературы Effect of the active powder of discretely devulcanized rubber on bitumen properties at low temperatures

  • Partl M.N., Bahia H.U., Canestrari F., etc. Advances in Interlaboratory Testing and Evaluation of Bituminous Materials. The International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM). Switzerland: Springer; 2013.
  • Vinogradov G.V., Isayev A.I., Zolotarev V.A., Verebskaya E.A. Rheological properties of road bitumens. Rheol. Acta. 1977; 16: 266-281.
  • Goon R.B. Petroleum bitumens. Moscow: Chemistry; 1973.
  • GOST 33133. Public roads. Viscous petroleum bitumen for roads. Technical requirements.
  • Dubina S.I., Kondrashin V.G. Quality of Russian highways. Transport of Russian Federation. 2006; 2: 49-50.
  • Porto M., Caputo P., Loise V., etc. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019; 9(4): 742. https://doi.org/10.3390/app9040742
  • Lesueur D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science. 2009; 145: 42–82. https://doi.org/10.1016/j.cis.2008.08.011
  • Von Quintus H.L., Mallela J., Buncher M. Quantification of Effect of Polymer-Modified Asphalt on Flexible Pavement Performance. Journal of Transportation Research Board. 2007; 2001(1): 141–154. https://doi.org/10.3141/2001-16
  • Laukkanen O-V., Soenen H., Winter H.H., Seppälä J. Low-temperature rheological and morphological characterization of SBS modified bitumen. Construction and Building Materials. 2018; 179: 348–359. https://doi.org/10.1016/j.conbuildmat.2018.05.160
  • Elwardany M.D., Planche J.P., King G. Universal and practical approach to evaluate asphalt binder resistance to thermally-induced surface damage. Construction and Building Materials. 2020; 255: 119331. https://doi.org/10.1016/j.conbuildmat.2020.119331
  • Masson J-F., Leblond V., Margeson J., Bundalo-Perc S. Low-temperature bitumen stiffness and viscous paraffinic nano-and micro-domains by cryogenic AFM and PDM NRCC-49710. Journal of Microscopy. 2007; 227(3): 191–202. https://doi.org/10.1111/j.1365-2818.2007.01796.x
  • Frolov I.N., Yusupova T.N., Ziganshin M.A., Okhotnikova E.S., Firsin A.A. Features of formation of colloidal disperse structure in oil bitumen. Colloidal Journal. 2016; 78(5): 650–654. https://doi.org/10.7868/S0023291216050062.
  • Kane M., Djabourov M., Volle J.L., Lechaire J.P., and Frebourg G. Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow. Fuel. 2003; 82: 127–135. https://doi.org/10.1016/S0016-2361(02)00222-3
  • Musser B.J., Kilpatrik P.K. Molecular characterization of wax isolated from a variety of crude oils. Energy Fuels. 1998; 12(4): 715–725. https://doi.org/10.1021/EF970206U
  • Lu X., Langton M., Olofsson P., Redelius P. Wax morphology in bitumen. Journal of Materials Science. 2005; 40: 1893–1900. https://doi.org/10.1007/s10853-005-1208-4
  • EN 12593:2015 Bitumen and bituminous binders – Determination of the Fraass breaking point.
  • AASHTO T 313. Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR).
  • Jellema E., Scholten E., De Vries S., Soo Kim S., Kluttz B. Comparing cold performance results using fracture toughness test, asphalt binder cracking device, Fraass breaking point and bending beam rheometer. 5th Eurasphalt & Eurobitume Congress. Istanbul. 2012.
  • Kim S. Asphalt Binder Cracking Device to Reduce Low-Temperature Asphalt Pavement Cracking. Final Report. Highways for LIFE, Federal Highway Administration, 2010. [Electronic resource]. URL. www.fhwa.dot.gov/hfl/partnerships/asphalt/ez/ez.pdf January 2023.
  • Farrar M. Technical White Paper. Determining the Low-Temperature Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). Fundamental Properties of Asphalts and Modified Asphalts III Product: FP. 2015.
  • Büchner J., Wistuba M.P., Remmler T., Wang D. On low temperature binder testing using DSR 4 mm geometry. Materials and Structures. 2019; 52: 113. https://doi.org/10.1617/s11527-019-1412-3
  • Kommidi S.R. and Kim Y.-R. Investigation of DSR Test Methods to Determine Binder Low Temperature Properties. A Report on Research Sponsored by Nebraska Department of Transportation. 2019. [Electronic resource] URL: https://trid.trb.org/view/1652812 January 2023.
  • Radovsky B.S., Teltaev B.B. Viscoelastic characteristics of bitumen and their assessment by standard indicators. – Almaty: Bilim; 2013.
  • Hesp S.A.M., Iliuta S., Shirokoff J.W. Reversive Aging in Asphalt Binders. Energy and Fuels. 2007; 21: 1112–1121. https://doi.org/10.1021/ef060463b
  • Berkowitz M., Filipovich M., Sevilla A.B., Hesp S.A.M. Oxidative and Thermoreversible Aging Effects on Performance-Based Rheological Properties of Six Latin American Asphalt Binders. Energy and Fuels. 2019; 33(4): 2604–2613. https://doi.org/10.1021/acs.energyfuels.8b03265
  • GOST R 58400.9-2019 Petroleum bituminous binder materials. Method for determining the low-temperature properties using a dynamic shear rheometer (DSR).
  • GOST R 58400.8-2019 Petroleum bituminous binder materials. Method for determining the stiffness and creep of bitumen at negative temperatures using a beam bending rheometer (BBR).
  • GOST R 58400.11-2019 Petroleum bituminous binder materials. Method for determining the temperature of cracking with the device ABCD.
  • Büchner J., Wistuba M.P., Dasek O., Staschkiewicz M., Soenen H., Zofka A., Remmler T. Interlaboratory study on low temperature asphalt binder testing using Dynamic Shear Rheometer with 4 mm diameter parallel plate geometry. Road Materials and Pavement Design. 2022; 23(4): 890–906. https://doi.org/10.1080/14680629.2020.1851291
  • Nikol’skii V., Dudareva T., Krasotkina I., Gordeeva I., Vetcher A.A., Botin A. Ultra-Dispersed Powders Produced by High-Temperature Shear-Induced Grinding of Worn-Out Tire and Products of Their Interaction with Hot Bitumen. Polymers. 2022; 14(17): 3627. https://doi.org/10.3390/polym14173627
  • Nikolsky V.G., Sorokin A.V., Lobachev V.A., Krasotkina I.A. Dudareva T.V. Method of obtaining highly dispersed polymeric material and device for its implementation: RF Patent 2 612 637. 09.03.2017. Application № 2015131481 from 29.07.2015.
  • GOST 33140-2014. Petroleum viscous road bitumens. Method for determination of aging under the influence of high temperature and air (RTFOT method).
  • Nikol’skii V., Dudareva T., Krasotkina I., etc. Mechanism of multi-stage degradation in hot bitumen of micronized Elastomeric Powder Modifiers from worn-out tire’s rubber. Polymers. 2022; 14(19): 4112. https://doi.org/10.3390/polym14194112.
  • Nahar S.N., Schmets A.J.M., Scarpas A., Schitter G. Temperature and thermal history dependence of the microstructure in bituminous materials. European Polymer Journal. 2013; 49(8): 1964–1974. https://doi.org/10.1016/j.eurpolymj.2013.03.027
  • Zolotarev V. Methods for determining stresses at key temperatures. Construction and Building Materials. 2022; 345: 128365. https://doi.org/10.1016/j.conbuildmat.2022.128365
  • FHWA-HIF-21-042 Delta Tc Binder Specification Parameter. Technical Brief. Federal Highway Administration (FHWA). 2021. [Electronic resource] URL. https://www.fhwa.dot.gov/pavement/asphalt/HIF_Delta_Binder_Spec_Tch-Brf.pdf January 2023.
  • Lesueur D., Elwardany M.D., Planche J.-P., Christensen D., King G.N. Methods for determining stresses at key temperatures. Construction and Building Materials. 2021; 293(1–2): 123464. https://doi.org/10.1016/j.conbuildmat.2021.123464
  • Kaplan A.M., Chekunaev N.I. Theoretical Foundations of Grinding Heterogeneous Materials. Theoretical foundations of chemical technology. 2010; 44(3): 354–362.
Еще
Статья научная