Efficient Communication for Extremely Large-Scale MIMO Systems Networks: Integrating Firefly Optimization and Machine Learning
Автор: Samar A. Nassar, Adly S. Tag Eldien, Esraa M. Eid, Shimaa S. Ali
Журнал: International Journal of Wireless and Microwave Technologies @ijwmt
Статья в выпуске: 3 Vol.14, 2024 года.
Бесплатный доступ
This paper proposes a novel approach for tuning the parameters of 6th generation (6G) extremely large-scale MIMO (Multiple Input Multiple Output) systems using the Firefly optimization algorithm. The main objective is to achieve accurate estimation of the hybrid field in the MIMO system. The proposed method optimizes MIMO system parameters by minimizing the cost function through a hybrid pre-coding and combining technique. This optimization problem is formulated as a nonlinear programming problem and solved using the Firefly algorithm. Experimental results demonstrate that the proposed approach provides accurate hybrid field estimation with improved system performance compared to existing state-of-the-art methods. The Firefly optimization algorithm proves to be an efficient and effective method for tuning 6G MIMO system parameters, with potential applications in future wireless communication systems. In addition to the Firefly optimization algorithm, this paper introduces a complementary machine learning-assisted resource allocation strategy to optimize network resource utilization. By leveraging machine learning algorithms, dynamic resource allocation based on real-time network conditions is ensured, enhancing overall system performance. The integration of the Firefly optimization algorithm for parameter tuning and machine learning-assisted resource allocation aims to achieve holistic optimization in 6G networks. Experimental results demonstrate that this integrated approach not only refines parameter tuning but also dynamically adapts resource allocation, leading to superior system efficiency and throughput compared to conventional methods. This comprehensive strategy addresses the evolving demands of future wireless communication systems. Results showed that using a sparsity value of 8, with 600 beams and 300 pilots, minimizes the mean square error of estimation to less than -13 dB
Extremely Large-Scale MIMO, Firefly Optimization, Machine Learning, Resource Allocation, Throughput Enhancement, 6G Networks
Короткий адрес: https://sciup.org/15019254
IDR: 15019254 | DOI: 10.5815/ijwmt.2024.03.01
Список литературы Efficient Communication for Extremely Large-Scale MIMO Systems Networks: Integrating Firefly Optimization and Machine Learning
- Hewa, T., Gür, G., Kalla, A., Ylianttila, M., Bracken, A., & Liyanage, M. (2020). The role of blockchain in 6G: Challenges, opportunities and research directions. 2020 2nd 6G Wireless Summit (6G SUMMIT), 1-5.
- Larsson, E. G., & Van der Perre, L. (2017). Massive MIMO for 5G.
- Nadeem, Q. U. A., Kammoun, A., Chaaban, A., Debbah, M., & Alouini, M. S. (2019). Intelligent reflecting surface assisted wireless communication: Modeling and channel estimation. arXiv preprint arXiv:1906.02360.
- Ali, E., Ismail, M., Nordin, R., & Abdulah, N. F. (2017). Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering, 18, 753-772.
- Guo, H., Wang, Y., Liu, J., & Kato, N. (2022). Super-Broadband Optical Access Networks in 6G: Vision, Architecture, and Key Technologies. IEEE Wireless Communications, 29(6), 152-159.
- Ge, X. (2019). Ultra-reliable low-latency communications in autonomous vehicular networks. IEEE Transactions on Vehicular Technology, 68(5), 5005-5016.
- Torres Vega, M., Liaskos, C., Abadal, S., Papapetrou, E., Jain, A., Mouhouche, B., ... & Famaey, J. (2020). Immersive interconnected virtual and augmented reality: a 5G and IoT perspective. Journal of Network and Systems Management, 28, 796-826.
- Chen, H., Yuan, L., & Jing, G. (2020, October). 5G boosting smart cities development. In 2020 2nd International conference on artificial intelligence and advanced manufacture (AIAM) (pp. 154-157). IEEE.
- Yilmaz, O. N., Wang, Y. P. E., Johansson, N. A., Brahmi, N., Ashraf, S. A., & Sachs, J. (2015, June). Analysis of ultra-reliable and low-latency 5G communication for a factory automation use case. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1190-1195). IEEE.
- Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6G wireless communications: Vision and potential techniques. IEEE network, 33(4), 70-75.
- Wang, Z., Zhang, J., Du, H., Wei, E. I., Ai, B., Niyato, D., & Debbah, M. (2023). Extremely large-scale MIMO: Fundamentals, challenges, solutions, and future directions. IEEE Wireless Communications.
- Jeyakumar, P., Ramesh, A., Srinitha, S., Nishant, V. T., Gowri, P., & Muthuchidambaranathan, P. (2022). Two-stage deep learning-based hybrid precoder design for very large scale massive MIMO systems. Physical Communication, 54, 101835.
- Björnson, E., Sanguinetti, L., Wymeersch, H., Hoydis, J., & Marzetta, T. L. (2019). Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays. Digital Signal Processing, 94, 3-20.
- Han, C., Yan, L., & Yuan, J. (2021). Hybrid beamforming for terahertz wireless communications: Challenges, architectures, and open problems. IEEE Wireless Communications, 28(4), 198-204.
- Xiao, Y., Xiao, Y., Yu, F., Li, Y., Wang, Y., & Fu, B. (2018, June). Hybrid beamforming for large-scale MIMO-OFDM in frequency selective fading. In 2018 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1-4). IEEE.
- Z. Hu, C. Chen, Y. Jin, L. Zhou and Q. Wei, "Hybrid-Field Channel Estimation for Extremely Large-Scale Massive MIMO System," in IEEE Communications Letters, vol. 27, no. 1, pp. 303-307, Jan. 2023, doi: 10.1109/LCOMM.2022.3219937.
- Wei, X., & Dai, L. (2021). Channel estimation for extremely large-scale massive MIMO: Far-field, near-field, or hybrid-field?. IEEE Communications Letters, 26(1), 177-181.
- Cui, M., & Dai, L. (2022). Channel estimation for extremely large-scale MIMO: Far-field or near-field?. IEEE Transactions on Communications, 70(4), 2663-2677.
- Tarboush, S., Sarieddeen, H., Chen, H., Loukil, M. H., Jemaa, H., Alouini, M. S., & Al-Naffouri, T. Y. (2021). TeraMIMO: A channel simulator for wideband ultra-massive MIMO terahertz communications. IEEE Transactions on Vehicular Technology, 70(12), 12325-12341.
- Zhang, X., Zhang, H., & Eldar, Y. C. (2022). Near-field sparse channel representation and estimation in 6G wireless communications. arXiv preprint arXiv:2212.13527.
- Arora, S., & Singh, S. (2013). The firefly optimization algorithm: convergence analysis and parameter selection. International Journal of Computer Applications, 69(3).
- Kumar, D., Gandhi, B. R., & Bhattacharjya, R. K. (2020). Firefly algorithm and its applications in engineering optimization. Nature-Inspired Methods for Metaheuristics Optimization: Algorithms and Applications in Science and Engineering, 93-103.
- Johari, N. F., Zain, A. M., Noorfa, M. H., & Udin, A. (2013). Firefly algorithm for optimization problem. Applied Mechanics and Materials, 421, 512-517.