Efficient method of calculating layered conical shells with Lagrange multigrid elements use

Бесплатный доступ

The increased requirements for strength calculations of space-rocket and aviation technology designs cause the need for the development and improvement of approximate solutions for elasticity theory tasks with small error algo- rithms. The article considers the numerical method of calculating elastic layered conical shells (LCS) of various thickness under static loading which are widely used in space-rocket technology. The suggested method uses three-dimensional curvilinear Lagrange multigrid finite elements (MGFE). A system of nested grids is used for MGFE constructing. The fine grid is generated by the basic partition that takes into account MGFE heterogeneous structure. The basic partition dimensionality is reduced with the help of large grids which leads to the system of linear algebraic equations of the small dimension finite elements method. Three-dimensional elasticity theory equations use allows to apply MGFE for calculating LCS of any thickness. Displacements in MGFE are approximated by Lagrange polynomials which, in con- trast to power polynomials, gives the opportunity to design big size three-dimensional thin shell elements. Lagrange polynomials nodes coincide in shell thickness with the nodes of MGFE large grids which lie on the shared borders of multi-module layers. The efficiency of the presented method is that the suggested MGFE generate small dimension discrete models that require 103-107 times less electronic computing machine (ECM) memory than basic models. The suggested law of dis- crete models grinding generates uniform and fast convergence of numerical solutions which allows to make solutions with the specified (small) error. Examples of LCS calculating (whole ones as well as with holes) under axisymmetric and local loading are given. Comparative analysis of solutions obtained with the help of MGFE, single-grid finite elements and the program com- plex ANSYS has been conducted.

Еще

Elasticity, conical shell, composites, lagrange polynomials, multigrid finite elements

Короткий адрес: https://sciup.org/148321853

IDR: 148321853   |   DOI: 10.31772/2587-6066-2018-19-3-423-431

Список литературы Efficient method of calculating layered conical shells with Lagrange multigrid elements use

  • Bellman R., Casti J. Differential quadrature and long-term integration // J. Math. Anal. Appl. 1971. Vol. 34, No. 2. P. 235-238.
  • Wu C. P., Hung Y. C., Lo J. Y. A refined asymptotic theory of laminated circular conical shells // European Journal of Mechanics. 2002. Vol. 21, No. 2. P. 281-300.
  • Куликов Г. М., Плотникова C. В. Решение задачи статики для упругой оболочки в пространственной постановке // Доклады РАН. 2011. № 5. С. 613-616.
  • Куликов Г. М., Плотникова C. В. Решение трехмерных задач для толстых упругих оболочек на основе метода отсчетных поверхностей // Механика твердого тела. 2014. № 4. С. 54-64.
  • Куликов Г. М., Плотникова C. В. Метод решения трехмерных задач теории упругости для слоистых композитных пластин // Механика композитных материалов. 2012. № 1. С. 23-36.
Статья научная