Efficient stream data processing for Backend model training
Автор: Kuznetcov I.A.
Журнал: Международный журнал гуманитарных и естественных наук @intjournal
Рубрика: Технические науки
Статья в выпуске: 11-2 (98), 2024 года.
Бесплатный доступ
This paper examines approaches to stream data processing (SDP) for training machine learning (ML) models on the backend. Architectural solutions, including Lambda and Kappa architectures as well as microservice approaches, are explored with a focus on their advantages and limitations under modern conditions. Tools such as Apache Kafka, Apache Flink, and Apache Spark Streaming are analyzed, emphasizing their applicability to various data processing tasks. Special attention is given to performance optimization methods, including the use of online learning and incremental learning algorithms, data compression, efficient serialization, and resource management. The article presents examples of technology implementation demonstrating their practical value.
Stream data processing (sdp), architectural solutions, performance optimization, machine learning (ml), microservice architecture
Короткий адрес: https://sciup.org/170208309
IDR: 170208309 | DOI: 10.24412/2500-1000-2024-11-2-223-228
Список литературы Efficient stream data processing for Backend model training
- Hsu K. Big data analysis and optimization and platform components //Journal of King Saud University-Science. - 2022. - Vol. 34. - № 4. - Р. 101945. EDN: HRGUDD
- Zhao M., Agarwal N., Basant A., Gedik B., Pan S., Ozdal M., Pol P. Understanding data storage and ingestion for large-scale deep recommendation model training: Industrial product // Proceedings of the 49th annual international symposium on computer architecture. - 2022. - Р. 1042-1057.
- Shojaee Rad Z., Ghobaei-Arani M. Data pipeline approaches in serverless computing: a taxonomy, review, and research trends // Journal of Big Data. - 2024. - Vol. 11. - № 1. - Р. 1-42. EDN: DOTUCO
- Aluev A. Scalable web applications: a cost-effectiveness study using microservice architecture // Cold Science. - 2024. - № 8. - P. 32-38.
- Haryani D. Enhancing Mobile App User Experience: A Deep Learning Approach for System Design and Optimization. - 2024.
- Sidorov D. Cross-browser compatibility issues and solutions in web development // ISJ Theoretical & Applied Science. - 2024. - Vol. 139. - № 11. - P. 18-21.
- Kumar P., Gowda D. Y., Prakash A. M. Machine Learning in Cybersecurity: A Comprehensive Survey of Data Breach Detection, Cyber-Attack Prevention, and Fraud Detection // Pioneering Smart Healthcare 5.0 with IoT, Federated Learning, and Cloud Security. - 2024. - Р. 175-197.
- Shastry K. A., Manjunatha B. A.Intelligent Analytics in Big Data and Cloud: Big Data; Analytics; Cloud //Intelligent Analytics for Industry 4.0 Applications. - CRC Press, 2023. - Р. 85-112.