Energy efficiency and decarbonization of cement and foamed glass production through the use of natural active mineral additives (opoka and diatomite)

Автор: Zhakipbayev B.Ye., Ismailova A.B., Tukhtamisheva A.Z., Seitkazinov O.D., Moldamuratov Zh.N.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: System solutions for technological problems

Статья в выпуске: 6 Vol.16, 2024 года.

Бесплатный доступ

Introduction. In the context of the need to improve energy efficiency and decarbonize cement production, the development of technologies using natural active mineral additives is becoming increasingly relevant. This article examines the use of opoka and diatomite as active additives for producing Portland cement, which allows the clinker content to be reduced by up to 50% while maintaining the operational properties of the cement. Methods and Materials. The research was conducted using electron microscopy, X-ray phase analysis, and energy-dispersive microanalysis. The study analyzed the composition of clinker from SAS-Tobe Technologies, gypsum from the Bagalin deposit, slags from the Novo-Dzhambul Phosphorus Plant, opoka from the Turkestan-Urangay deposit, and diatomite from the Utesai deposit. Physicochemical tests were carried out in the “SAPA” laboratories and at the LLP “SAS-Tobe Technologies” plant. Results and Discussion. The results of the study showed that the addition of opoka and diatomite in a quantity of 15% accelerates mineral formation processes due to the formation of a liquid clinker phase at lower temperatures. This reduces the firing temperature by 100–150 °C, leading to lower energy consumption and improved thermodynamic processes in clinker formation. Conclusion. The introduction of natural mineral additives in Portland cement production reduces clinker content by up to 50%, contributing to energy and resource savings without compromising cement quality. The research results confirm the potential of using opoka and diatomite for decarbonizing the cement industry and increasing its energy efficiency.

Еще

Active mineral additives, energy saving and decarbonisation, opoka, diatomite, cement production

Короткий адрес: https://sciup.org/142242751

IDR: 142242751   |   DOI: 10.15828/2075-8545-2024-16-6-587-600

Список литературы Energy efficiency and decarbonization of cement and foamed glass production through the use of natural active mineral additives (opoka and diatomite)

  • Smirnov P.V., Zhakipbayev B.Y., Staroselets D.A., Deryagina O.I., Batalin G.A., Gareev B.I., Vergunov A.V. Diatomites and opoka from western Kazakhstan deposits: lithogeochemistry, structural and textural parameters, potential of use. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2023; 334(7): 187–201. https://doi.org/10.18799/24131830/2023/7/4046
  • Zhakipbayev B.Ye., Zhanikulov N.N. Use of tephritobasalt and lead slag as an alternative raw material in burning portland cement clinker. Bulletin of Kazakh Leading Academy of Architecture and Construction. 2023; 88(2): 162–177. https://doi.org/10.51488/1680-080x/2023.2-18
  • Kolesnikov A.S., Kuraev R.M. Thermodynamic modeling of the synthesis of the main minerals of cement clinker from technogenic raw materials. Kompleksnoe Ispolʹzovanie Mineralʹnogo Syrʹâ/Complex Use of Mineral Resources/ Mineraldik Shikisattardy Keshendi Paidalanu. 2021; 318(3): 24–34. https://doi.org/10.31643/2021/6445.25
  • Zhakipbayev B.Y., Alferyeva Y.O., Ksenofontov D.A., Kotel’nikov A.R. An Experimental Study of the Possible Use of Opoka as a Si Source in Glass Production of the Turkestan Region, Kazakhstan. Moscow University Geology Bulletin. 2021; 76(4): 398–406. https://doi.org/10.3103/S0145875221040128
  • Balykov A.S., Nizina T.A., Kyashkin V.M., Volodin S.V. Prescription and technological efficiency of sedimentary rocks of various composition and genesis in cement systems. Nanotechnologies in Construction. 2022; 14(1): 53–61. https://doi.org/10.15828/2075-8545-2022-14-1-53-61
  • Zhernovoi F.E., Zhernovaya N.F., Snukaeva M.V. Effectiveness of opoka-containing causticized batches for glass containers. Glass and Ceramics (English Translation of Steklo i Keramika). 2015; 72(3): 83–85. https://doi.org/10.1007/s10717-015-9729-z
  • Zhernovoi F.E., Zhernovaya N.F., Snukaeva M.V. Effectiveness of opoka-containing causticized batches for glass containers. Glass and Ceramics (English Translation of Steklo i Keramika). 2015; 72(3): 83–85. https://doi.org/10.1007/s10717-015-9729-z
  • Kaz’Mina O.V., Vereshchagin V.I., Semukhin B.S., Abiyaka A.N. Low-temperature synthesis of granular glass from mixes based on silica-alumina-containing components for obtaining foamed materials. Glass and Ceramics (English Translation of Steklo i Keramika). 2009; 66(9–10): 341–344. https://doi.org/10.1007/s10717-010-9193-8
  • Yatsenko E.A., Smolii V.A., Yatsenko L.A., Gol’tsman N.S. Physicochemical Studies of Raw Materials from the Far East Russia for Synthesizing Foamed Glass and Protective Enamel Coatings. Glass and Ceramics (English Translation of Steklo i Keramika). 2019; 76(5–6): 235–238. https://doi.org/10.1007/s10717-019-00172-9
  • Suleimenov Z.T., Sagyndykov A.A., Moldamuratov Z.N., Bayaliyeva G. M., Alimbayeva Z.B. High-strength wall ceramics based on phosphorus slag and bentonite clay. Nanotechnologies in Construction. 2022; 14(1): 11–17. https://doi.org/10.15828/2075-8545-2022-14-1-11-17
  • Yatsenko E.A., Smolii V.A., Klimova L.V., Gol’tsman B.M., Ryabova A.V., Golovko D.A., Chang C.C. Foamed Glass Synthesis by the Hydrate Method Based on Different Natural Materials. Glass and Ceramics (English Translation of Steklo i Keramika). 2020; 77(3–4): 135–138. https://doi.org/10.1007/s10717-020-00256-x
  • Kononenko O.A., Gelis V.M., Milyutin V.V. Incorporation of bottoms from nuclear power plants into a matrix based on Portland cement and silicic additives. Atomic Energy. 2011; 109(4): 278–284. https://doi.org/10.1007/s10512-011-9357-9
  • Makarov D.V., Manakova N.K., Suvorova O.V. Production of Rock-Based Foamed-Glass Materials (Review). Glass and Ceramics (English Translation of Steklo i Keramika). 2023; 79(9–10): 411–417. https://doi.org/10.1007/s10717-023-00522-8
  • Durastanti C., Moretti L. Environmental impacts of cement production: A statistical analysis. Applied Sciences (Switzerland). 2020; 10(22): 1–23. https://doi.org/10.3390/app10228212
  • Uwasu M., Hara K., Yabar H. World cement production and environmental implications. Environmental Development. 2014; 10(1): 36–47. https://doi.org/10.1016/j.envdev.2014.02.005
  • Tautorat P., Lalin B., Schmidt T.S., Steffen B. Directions of innovation for the decarbonization of cement and steel production – A topic modeling-based analysis. Journal of Cleaner Production. 2023; 407. https://doi.org/10.1016/j.jclepro.2023.137055
  • Obrist M.D., Kannan R., Schmidt T.J., Kober T. Decarbonization pathways of the Swiss cement industry towards net zero emissions. Journal of Cleaner Production. 2021; 288. https://doi.org/10.1016/j.jclepro.2020.125413
  • Rumayor M., Fernández-González J., Domínguez-Ramos A., Irabien A. Deep Decarbonization of the Cement Sector: A Prospective Environmental Assessment of CO2 Recycling to Methanol. ACS Sustainable Chemistry and Engineering. 2022; 10(1): 267–278. https://doi.org/10.1021/acssuschemeng.1c06118
  • Busch P., Kendall A., Murphy C.W., Miller S.A. Literature review on policies to mitigate GHG emissions for cement and concrete. Resources, Conservation and Recycling. 2022; Elsevier B.V. https://doi.org/10.1016/j.resconrec.2022.106278
  • Wang Y., Yi H., Tang X., Wang Y., An H., Liu J. Historical trend and decarbonization pathway of China’s cement industry: A literature review. Science of the Total Environment. 2023; Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.164580
  • Moldamuratov Z.N., Ussenkulov Z.A., Yeskermessov Z.E., Shanshabayev N.A., Bapanova Z.Z., Nogaibekova M.T., Joldassov S.K. Experimental study of the effect of surfactants and water-cement ratio on abrasion resistance of hydraulic concretes. Rasayan Journal of Chemistry. 2023; 16(3): 1116–1126. https://doi.org/10.31788/RJC.2023.1638391
  • Turakulov Z., Kamolov A., Turakulov A., Norkobilov A., Fallanza M. Assessment of the Decarbonization Pathways of the Cement Industry in Uzbekistan. Engineering Proceedings. 2023; 37(1). https://doi.org/10.3390/ECP2023-14639
  • Carbone C., Ferrario D., Lanzini A., Stendardo S., Agostini A. Evaluating the Carbon Footprint of Cement Plants Integrated With the Calcium Looping CO2 Capture Process. Frontiers in Sustainability. 2022; 3. https://doi.org/10.3389/frsus.2022.809231
  • Cormos A.M., Dragan S., Petrescu L., Sandu V., Cormos C.C. Techno-economic and environmental evaluations of decarbonized fossil-intensive industrial processes by reactive absorption and adsorption CO2 capture systems. Energies. 2020; 13(5). https://doi.org/10.3390/en13051268
  • Kabdushev A.A., Agzamov F.A., Manapbayev B.Z., Moldamuratov Z.N. Microstructural analysis of strainresistant cement designed for well construction. Nanotechnologies in Construction. 2023; 15(6): 564–573. https://doi.org/10.15828/2075-8545-2023-15-6-564-573
  • Karlsson I., Rootzén J., Toktarova A., Odenberger M., Johnsson F., Göransson L. Roadmap for decarbonization of the building and construction industry-A supply chain analysis including primary production of steel and cement. Energies. 2020; 13(6). https://doi.org/10.3390/en13164136
  • Manapbayev B., Alimbayev B., Amanbayev E., Kabdushev A., Moldamuratov Z. Study of internal corrosion on the turning angles in steel pipes. In E3S Web of Conferences. 2021; 225. https://doi.org/10.1051/e3sconf/202122501004
  • Cormos C.C., Cormos A.M., Petrescu L., Dinca C. Decarbonization of fossil energy-intensive industrial processes using innovative calcium looping technology. Chemical Engineering Transactions. 2021; 86: 937–942. https://doi.org/10.3303/CET2186157
  • Zhakipbayev B.Ye., Kan X.S., Kulmakhanova A.Sh., Kuntubayeva M.N. Low-temperature synthesis of glass phase through the use of opok matrices South Kazakhstan amorphous siliceous rocks in the production of container glass. VESTNIK KazNRTU. 2016; 6 (118): 486-491.
Еще
Статья научная