Enhancing Jakarta Faces Web App with AI Data-Driven Python Data Analysis and Visualization
Автор: Bala Dhandayuthapani V.
Журнал: International Journal of Information Technology and Computer Science @ijitcs
Статья в выпуске: 5 Vol. 16, 2024 года.
Бесплатный доступ
Python is widely used in artificial intelligence (AI) and machine learning (ML) because of its flexibility, adaptability, rich libraries, active community, and broad environment, which makes it a popular choice for AI development. Python compatibility has already been examined with Java using TCP socket programming on both non-graphical and graphical user interfaces, which is highly essential to implement in the Jakarta Faces web application to grab potential competitive advantages. Python data analysis library modules such as numpy, pandas, and scipy, as well as visualization library modules such as Matplotlib and Seaborn, and machine-learning module Scikit-learn, are intended to be integrated into the Jakarta Faces web application. The research method uses similar TCP socket programming for the enhancement process, which allows instruction and data exchange between Python and Jakarta Faces web applications. The outcome of the findings emphasizes the significance of modernizing data science and machine learning (ML) workflows for Jakarta Faces web developers to take advantage of Python modules without using any third-party libraries. Moreover, this research provides a well-defined research design for an execution model, incorporating practical implementation procedures and highlighting the results of the innovative fusion of AI from Python into Jakarta Faces.
Data Analysis, Visualization, Interoperability, Jakarta Faces, Matplotlib, Python, Seaborn, TCP, Web App
Короткий адрес: https://sciup.org/15019507
IDR: 15019507 | DOI: 10.5815/ijitcs.2024.05.03
Список литературы Enhancing Jakarta Faces Web App with AI Data-Driven Python Data Analysis and Visualization
- A. Joshi and H. Tiwari, “An Overview of Python Libraries for Data Science,” J. Eng. Technol. Appl. Phys., vol. 5, no. 2, pp. 85–90, 2023, doi: https://doi.org/10.33093/jetap.2023.5.2.
- “Jakarta Faces Technology.” https://jakarta.ee/learn/docs/jakataee-tutorial/current/web/faces-intro/faces-intro.html
- K. Kratchanov and E. Ergün, “Language Interoperability in Control Network Programming,” vol. 7, no. 78, pp. 79–90, 2018.
- H.-A. Jacobsen, “Programming Language Interoperability in Distributed Computing Environments,” Distrib. Appl. Interoper. Syst. II, pp. 287–300, 1999, doi: 10.1007/978-0-387-35565-8_24.
- J. J. Cook, “Language interoperability and logic programming languages,” 2005, [Online]. Available: http://www.era.lib.ed.ac.uk/handle/1842/725
- T. Ekman, P. Mechlenborg, and U. P. Schultz, “Flexible language interoperability,” J. Object Technol., vol. 6, no. 8, pp. 95–116, 2007, doi: 10.5381/jot.2007.6.8.a2.
- N. Loutas, E. Kamateri, F. Bosi, and K. Tarabanis, “Cloud computing interoperability: The state of play,” Proc. - 2011 3rd IEEE Int. Conf. Cloud Comput. Technol. Sci. CloudCom 2011, pp. 752–757, 2011, doi: 10.1109/CloudCom.2011.116.
- Bala Dhandayuthapani V., "Python Data Analysis and Visualization in Java GUI Applications Through TCP Socket Programming", International Journal of Information Technology and Computer Science, Vol.16, No.3, pp.72-92, 2024.
- M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, and M. Luján, “Cross-language interoperability in a multi-language runtime,” ACM Trans. Program. Lang. Syst., vol. 40, no. 2, 2018, doi: 10.1145/3201898.
- C. Computing and S. Committee, IEEE Guide for Cloud Portability and Interoperability Profiles (CPIP). 2020.
- T. Y. Shevgunov and G. V. Malshakov, “Method of Achieving Interoperability of Applied Software Based on the Analysis of Their Data,” 2020 Syst. Signals Gener. Process. F. Board Commun., 2020, doi: 10.1109/IEEECONF48371.2020.9078549.
- K. Munawar and M. S. Naveed, “The Impact of Language Syntax on the Complexity of Programs: A Case Study of Java and Python,” Int. J. Innov. Sci. Technol., vol. 4, no. 3, pp. 683–695, 2022, doi: 10.33411/ijist/2022040310.
- H. Subramoni, F. Petrini, V. Agarwal, and D. Pasetto, “Intra-socket and inter-socket communication in multi-core systems,” IEEE Comput. Archit. Lett., vol. 9, no. 1, pp. 13–16, 2010, doi: 10.1109/L-CA.2010.4.
- P. S. K. Manikanta Vamsi, P.Lokesh K. Neha Reddy, “Visualization of Real-World Enterprise Data using Python Django Framework,” s Sci. Eng. Pap., pp. 0–6, 2021, doi: 10.1088/1757-899X/1042/1/012019.
- D. Punasya, H. Kushwah, H. Jain, and R. Sheikh, “an Application for Sales Data Analysis and Visualization Using Python and Django,” Int. Res. J. Mod. Eng., no. 06, pp. 1757–1762, 2021, [Online]. Available: www.irjmets.com
- L. Addepalli et al., “Assessing the Performance of Python Data Visualization Libraries: A Review,” Int. J. Comput. Eng. Res. Trends, vol. 10, no. 1, pp. 29–39, 2023.
- A. Kumar Rathore and R. Rajnish, “Comprehensive review of data visualization techniques using python,” Amity J. Comput. Sci., vol. 3, no. 2, pp. 42–48, 2017.
- A. Oberoi and R. Chauhan, “Visualizing data using Matplotlib and Seaborn libraries in Python for data science,” Int. J. Sci. Res. Publ., vol. 9, no. 3, p. p8733, 2019, doi: 10.29322/ijsrp.9.03.2019.p8733.
- K. Nongthombam, “Data Analysis Using Python,” Int. J. Eng. Res. Technol., vol. 10, no. 07, pp. 463–468, 2021.
- A. H. Sial, S. Yahya, and S. Rashdi, “Comparative Analysis of Data Visualization Libraries Matplotlib and Seaborn in Python,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 1, pp. 277–281, 2021, doi: 10.30534/ijatcse/2021/391012021.
- J. Zhang, “Python based data visualization and configurable teaching system design and implementation,” Proc. IEEE Asia-Pacific Conf. Image Process. Electron. Comput. IPEC 2021, pp. 1136–1140, 2021, doi: 10.1109/IPEC51340.2021.9421127.
- S. S. Cao, Y. Zeng, S. Yang, and S. S. Cao, “Research on Python Data Visualization Technology,” J. Phys. Conf. Ser., vol. 1757, no. 1, 2021, doi: 10.1088/1742-6596/1757/1/012122.
- F. Li, “Research on Data Visualization Technology Based on Python,” Int. J. Multidiscip. Res. Anal., vol. 05, no. 05, pp. 907–910, 2022, doi: 10.47191/ijmra/v5-i5-03.
- L. Addepalli et al., “Assessing the Performance of Python Data Visualization Libraries: A Review,” Int. J. Comput. Eng. Res. Trends, vol. 10, no. 1, pp. 29–39, 2023, doi: 10.22362/ijcert/2023/v10/i01/v10i0104.
- W. Wu and W. S. Noble, “Genomic data visualization on the web,” Bioinformatics, vol. 20, no. 11, pp. 1804–1805, 2004, doi: 10.1093/bioinformatics/bth154.
- H. Li et al., “Visual Omics: a web-based platform for omics data analysis and visualization with rich graph-tuning capabilities,” Bioinformatics, vol. 39, no. 1, pp. 2–5, 2023, doi: 10.1093/bioinformatics/btac777.
- M. Sedova, L. Jaroszewski, and A. Godzik, “Protael: Protein data visualization library for the web,” Bioinformatics, vol. 32, no. 4, pp. 602–604, 2016, doi: 10.1093/bioinformatics/btv605.
- Y. C. K. Piao, N. Ezzati-Jivan, and M. R. Dagenais, “Distributed architecture for an integrated development environment, large trace analysis, and visualization,” Sensors, vol. 21, no. 16, pp. 1–29, 2021, doi: 10.3390/s21165560.
- R. Liu et al., “Narrative scientific data visualization in an immersive environment,” Bioinformatics, vol. 37, no. 14, pp. 2033–2041, 2021, doi: 10.1093/bioinformatics/btab052.
- F. Esquembre, J. Chacón, J. Saenz, J. Vega, and S. Dormido-Canto, “A programmable web platform for distributed access, analysis, and visualization of data,” Fusion Eng. Des., vol. 197, no. September, p. 114049, 2023, doi: 10.1016/j.fusengdes.2023.114049.
- I. Merkoureas, A. Kaouni, G. Theodoropoulou, A. Bousdekis, A. Voulodimos, and G. Miaoulis, “Smyrida: A web application for process mining and interactive visualization,” SoftwareX, vol. 22, p. 101327, 2023, doi: 10.1016/j.softx.2023.101327.
- D. Schuster, F. Zerbato, S. J. van Zelst, and W. M. P. van der Aalst, “Defining and visualizing process execution variants from partially ordered event data,” Inf. Sci. (Ny)., vol. 657, no. November 2023, p. 119958, 2024, doi: 10.1016/j.ins.2023.119958.
- A. Lavanya, S. Sindhuja, L. Gaurav, and W. Ali, “A Comprehensive Review of Data Visualization Tools : Features , Strengths , and Weaknesses,” Int. J. Comput. Eng. Res. Trends, no. March, 2023, doi: 10.22362/ijcert/2023/v10/i01/v10i0102.
- S. Gadiparthi, “Effective Visualization Techniques for Multi- dimensional Data : A Comparative Analysis,” Int. J. Sci. Res. (IJSR, no. May, 2024, doi: 10.21275/SR24501104057.
- S. Yin, M. Ibrar, and L. Teng, “Data Visualization Analysis Based on Explainable Artificial Intelligence : A Survey Data Visualization Analysis Based on Explainable Artificial Intelligence : A Survey,” IJLAI Trans. Sci. Eng., no. May, 2024.
- H. W. A. Yanyan Xia, “Applications of Data Visualization Technology in Artificial Intelligence,” Front. Business, Econ. Manag., vol. 15, no. 2, pp. 2–5, 2024.
- K. Qu, “Application of data visualization in enterprise data analysis,” MATEC Web Conf., vol. 01038, pp. 1–5, 2024, doi: https://doi.org/10.1051/matecconf/202439501038.