Evolution of plastic deformation and temperature at the reflection of a shock pulse from superficies with a nanorelief or with supplied nanoparticles

Бесплатный доступ

Intense irradiation and high-speed collision of metals results in the formation and dissemination of shock compression pulses in them. The recent development of experimental technology using high-power subpicosecond laser pulses makes it possible to obtain shock pulses of the picosecond range. A molecular dynamics simulation of high-speed collisions for aluminium samples is conducted. The presence of a nanorelief or precipitated nanoparticles on the back superficies of the sample may essentially enhance the rear splitting threshold. The cooperation of a shock wave with a nanorelief or precipitated nanoparticles results in strong plastic deformation. Consequently, part of the compression pulse energy is spent on plastic deformation, which prevents spall destruction. The effect of increasing the threshold can reach hundreds of meters per second in terms of collision speed and tens of gigapascals in amplitude of the incident shock wave. The distribution of shear strain and temperature in the sample is considered. It is shown that the maximum degree of deformation and maximum heating are observed in those parts of the nanorelief, for which the greatest change in shape is observed. The maximum temperature reaches the melting point, but no obvious traces of melting are found, which may be related to the speed of the processes.

Еще

High speed impact, plastic deformation, molecular dynamics, nanorelief

Короткий адрес: https://sciup.org/147234129

IDR: 147234129   |   DOI: 10.14529/mmph210208

Список литературы Evolution of plastic deformation and temperature at the reflection of a shock pulse from superficies with a nanorelief or with supplied nanoparticles

  • Kanel G.I., Fortov V.E., Razorenov S.V. Shock Waves in Condensed-State Physics. Physics Us-pekhi, 2007, Vol. 50, pp. 771-791. DOI: 10.1070/PU2007v050n08ABEH006327_
  • Zaretsky E.B., Kanel G.I. Yield Stress, Polymorphic Transformation, and Spall Fracture of Shock-Loaded Iron in Various Structural States and at Various Temperatures. Journal of Applied Physics, 2015, Vol. 117, Iss. 19, p. 195901. DOI: 10.1063/1.4921356
  • Ashitkov S.I., Komarov P.S., Struleva E.V., Agranat M.B., Kanel G.I. Mechanical and Optical Properties of Vanadium under Shock Picosecond Loads. JETP Letters, 2015, Vol. 101, pp. 276-281. DOI: 10.1134/S0021364015040049
  • Gnyusov S.F., Rotshtein V.P., Mayer A.E., Rostov V.V., Gunin A.V., Khishchenko K.V., Le-vashov P.R. Simulation and Experimental Investigation of the Spall Fracture of 304L Stainless Steel Irradiated by a Nanosecond Relativistic High-Current Electron Beam. International Juornal of Fracture, 2016, Vol. 199, Iss. 1, pp. 59-70. DOI: 10.1007/s10704-016-0088-8
  • Yuan F., Chen L., Jiang P., Wu X. Twin Boundary Spacing Effects on Shock Response and Spall Behaviors of Hierarchically Nanotwinned FCC Metals. Journal of Applied Physics, 2014, Vol. 115, Iss. 6, p. 063509. DOI: 10.1063/1.4865738
  • Kuksin A., Norman G., Stegailov V., Yanilkin A., Zhilyaev P. Dynamic Fracture Kinetics, Influence of Temperature and Microstructure in the Atomistic Model of Aluminum. International Journal of Fracture, 2010, Vol. 162, Iss. 1, pp. 127-136. DOI: 10.1007/s10704-009-9424-6
  • Pogorelko V.V., Mayer A.E. Influence of Copper Inclusions on the Strength of Aluminum Matrix at High-Rate Tension. Materials Science and Engineering: A, 2015, Vol. 642, pp. 351-359. DOI: 10.1016/j.msea.2015.07.009
  • Pogorelko V.V., Mayer A.E. Influence of Titanium and Magnesium Nanoinclusions on the Strength of Aluminum at High-rate Tension: Molecular Dynamics Simulations. Materials Science and Engineering: A, 2016, Vol. 662, pp. 227-240. DOI: 10.1016/j.msea.2016.03.053
  • Krasnikov V.S., Mayer A.E. Plasticity Driven Growth of Nanovoids and Strength of Aluminum at High Rate Tension: Molecular Dynamics Simulations and Continuum Modeling. International Journal of Plasticity, 2015, Vol. 74, pp. 75-91. DOI: 10.1016/j.ijplas.2015.06.007
  • Kuksin A.Yu., Stegailov V.V., Yanilkin A.V. Atomistic Simulation of Plasticity and Fracture of Nanocrystalline Copper under High-Rate Tension. Physics Solid State, 2008, Vol. 50, pp. 2069-2075. DOI: 10.1134/S1063783408110115
  • Stegailov V.V., Yanilkin A.V. Structural Transformations in Single-Crystal Iron During ShockWave Compression and Tension: Molecular Dynamics Simulation. Journal of Experimental and Theoretical Physics, 2007, Vol. 104, Iss. 6, pp. 928-935. DOI: 10.1134/s1063776107060106
  • Huang L., Han W.Z., An Q., Goddard III W.A., Luo S.N. Shock-Induced Consolidation and Spallation of Cu Nanopowders. Journal of Applied Physics, 2012, Vol. 111, Iss. 1, p. 113508. DOI: 10.1063/1.3675174
  • Mackenchery K., Valisetty R.R., Namburu R.R., Stukowski A., Rajendran A.M., Dongare A.M. Dislocation Evolution and Peak Spall Strengths in Single Crystal and Nanocrystalline Cu. Journal of Applied Physics, 2016, Vol. 119, Iss. 4, p. 044301. DOI: 10.1063/1.4939867
  • Luo S.N., Germann T.C., Desai T.G., Tonks D.L., An Q. Anisotropic Shock Response of Columnar Nanocrystalline Cu. Journal of Applied Physics, 2010, Vol. 107, Iss. 12, p. 123507. DOI: 10.1063/1.3437654
  • Yuan F., Chen L., Jiang P., Wu X. Twin Boundary Spacing Effects on Shock Response and Spall Behaviors of Hierarchically Nanotwinned FCC Metals. Journal of Applied Physics, 2014, Vol. 115, Iss. 6, p. 063509. DOI: 10.1063/1.4865738
  • Shao J.L., Wang P., He A., Duan S.Q., Qin C.S. Influence of Voids or He Bubbles on the Spall Damage in Single Crystal Al. Modelling and Simulation in Materials Science Engineering, 2014, Vol. 22, no. 2, p. 025012. DOI: 10.1088/0965-0393/22/2/025012
  • Chen Y., Hu H., Tang T., Ren G., Li Q., Wang R., Buttler W.T. Experimental Study of Ejecta from Shock Melted Lead. Journal of Applied Physics, 2012, Vol. 111, Iss. 5, p. 053509. DOI: 10.1063/1.3692570
  • Shao J.L., Wang P., He A., Duan S.Q., Qin C.S. Atomistic Simulations of Shock-Induced Microjet from a Grooved Aluminium Surface. Journal of Applied Physics, 2013, Vol. 113, Iss. 15, p. 153501. DOI: 10.1063/1.4801800
  • Ren G., Chen Y., Tang T., Li Q. Ejecta Production from Shocked Pb Surface via Molecular Dynamics. Journal of Applied Physics, 2014, Vol. 116, Iss. 13, pp. 133507. DOI: 10.1063/1.4896902
  • Ebel A.A., Mayer A.E. Influence of Deposited Nanoparticles on the Spall Strength of Metals under the Action of Picosecond Pulses of Shock Compression. Journal of Physics: Conference Series, 2018, Vol. 946, P. 012045. DOI: 10.1088/1742-6596/946/1/012045
  • Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 1995, Vol. 117, Iss. 1, pp. 1-19. DOI: 10.1006/jcph.1995.1039
  • Mishin Y., Farkas D., Mehl M.J., Papaconstantopoulos D.A. Interatomic Potentials for Monoa-tomic Metals from Experimental Data and ab initio calculations. Physical Review B, 1999, Vol. 59, Iss. 5, p. 3393-3407.
  • Stukowski A. Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science Engineering, 2010, Vol. 18, Iss. 1, p. 015012. DOI: 10.1088/0965-0393/18/1/015012
  • Kelchner C.L., Plimpton S.J., Hamilton J.C. Dislocation Nucleation and Defect Structure during Surface Indentation. Physical Review B, 1998, Vol. 58, Iss. 17, p. 11085. DOI: 10.1103/physrevb.58.11085
  • Honeycutt J.D., Andersen H.C. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters. Journal of Physical Chemistry, 1987, Vol. 91, Iss. 19, pp. 4950-4963. DOI: 10.1021/j 100303a014
  • Stukowski A. Structure Identification Methods for Atomistic Simulations of Crystalline Materials. Modelling and Simulation in Materials Science Engineering, 2012, Vol. 20, no. 4, p. 045021. DOI: 10.1088/0965-0393/20/4/045021
  • Mayer A.E., Ebel A.A. Influence of Free Surface Nanorelief on the Rear Spallation Threshold: Molecular Dynamics Investigation. Journal of Applied Physics, 2016, Vol. 120, Iss. 16, p. 165903. DOI: 10.1063/1.4966555
  • Ebel A.A., Mayer A.E. Molecular Dynamic Investigations of the Shock Pulses Interaction with Nanostructured free Surface of a Target. Journal of Physics: Conference Series, 2016, Vol. 774, pp. 012060. DOI: 10.1088/1742-6596/774/1/012060
  • Mayer A.E., Ebel A.A. Shock-Induced Compaction of Nanoparticle Layers into Nanostructured coating. Journal of Applied Physics, 2017, Vol. 122, Iss. 16, p. 165901. DOI: 10.1063/1.4996846
  • Subramaniyan A.K., Sun C.T. Continuum Interpretation of Virial Stress in Molecular Simulations. International Journal of Solids and Structures, 2008, Vol. 45, Iss. 14-15, pp. 4340-4346. DOI: 10.1016/j.ij solstr.2008.03.016
Еще
Статья научная