Extragalactic TEV photons and the zero-point vibration spectrum limit

Бесплатный доступ

There are observations indicating a possible anomalous transparency of intergalactic space (filled with infrared background light) for extragalactic gamma-rays of very high energy (> 100 GeV). The anomaly is usually associated with effects of some new physics. However, another explanation is possible - as a manifestation relating to a cut-off of the zero-point vibration spectrum. It is assumed that this boundary 𝑈ZV is isotropic in the reference frame, where the cosmic microwave background (CMB) radiation is isotropic, and an estimate is obtained: 𝑈ZV ≈ 7.4TeV. It is noted that the presence of a boundary also leads to an increased beta decay time of accelerated particles with the Lorentz factor > 50 (in the CMB rest frame; in addition to the usual (𝛽)). It is widely believed that the ZV-spectrum continues up to the Planck energy (in natural units, the gravitational constant is related to the square of the Planck length). There is, however, a 5D variant of the Absolute Parallelism theory (AP), free from singularities of solutions, where a large characteristic length appears, which determines the thickness of expanding spherical 𝑆3 shell (a cosmological solution as the longitudinal wave along the radius) in co-moving co-ordinates. Newton’s Law ~ 1/𝑟2 is replaced by 1/𝑟 at distances exceeding 𝐿, and the Planck length (a composite parameter) “arises” from when switching to the conventional energy-momentum scale (where the energy of a photon is its angular frequency). The theory features are briefly exposed - description of 15 polarizations (degrees of freedom), the energymomentum tensor (in prolonged 4th order equations), topological charges and quasi-charges of localized field configurations.

Еще

Zero-point vibrations, extragalactic tev photons, plank length, absolute parallelism

Короткий адрес: https://sciup.org/142240762

IDR: 142240762   |   DOI: 10.17238/issn2226-8812.2023.3-4.327-332

Список литературы Extragalactic TEV photons and the zero-point vibration spectrum limit

  • Protheroe R. J., Meyer H. An infrared background – TeV gamma-ray crisis? Phys. Lett. B, 2000, 493, pp. 1–6; arXiv: astro-ph/0005349 . See also YouTube: NASA | Blazar Bonanza.
  • The MAGIC Collaboration: Albert J., Aliu E., Anderhub H., Antonelli L.A., et al. Very-High- Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe? Science, 2008, 320, pp. 1752–1754; arXiv: 0807.2822 [astro-ph].
  • Zhang G., Ma B.-Q. Axion-Photon Conversion of LHAASO Multi-TeV and PeV Photons. Chinese Phys. Lett., 2023, 40, pp. 011401–12400; arXiv: 2210.13120 [hep-ph].
  • Troitskiy S.V. Very-high-energy photons from the GRB 221009A gamma-ray burst. Workshops of the Theoretical Physics Department of the Institute for Nuclear Research, 2022. Available at: YouTube.com/@inrth (Romanenko V.S.).
  • Shtern B. The brightest gamma-ray burst ever: is new physics required? Troitskiy variant – nauka [Troitsk Variant Science], 2022, no. 23(367), pp. 1–2 (in Russ.); trv-science.ru/2022/12/.
  • Li H., Ma B.-Q. Lorentz invariance violation induced threshold anomaly versus VHE cosmic photon emission from GRB 221009A. Astropart. Phys., 2023, 148, pp. 102831–102835; arXiv: 2210.06338 [astro-ph.HE].
  • Dubbers D., Saul H., M¨arkisch B., Soldner T., Abele H. Exotic decay channels are not the cause of the neutron lifetime anomaly. Phys. Lett. B, 2019, 791, pp. 6–10; arXiv: 1812.00626 [nucl-ex].
  • Zhogin I. Absolute Parallelism, modified gravity, and suppression of gravitational short waves. Proc. PIRT-2011. Moscow: BMSTU, 2012, pp. 337–346; arXiv: gr-qc/1109.1679
  • Zhogin I. Old and new research on the Absolute Parallelism theory. Lambert Academic Publishing: 2010. 104 p. ISBN 978-3-8383-8876-2; arXiv: gr-qc/0412130
  • Zhogin I. Large-scale virial relations in 5D Absolute Parallelism with 4th-order gravity. Physical Interpretations of Relativity Theory (PIRT-2023), XXIII International Scientific Conference, Moscow, 2023, pp. 185–187; BMSTU.press PIRT-23 or pirt.bmstu.ru/en -> Abstracts.
  • Sturrock P.A., Parkhomov A.G., Fischbach E., Jenkins J.H. Power Spectrum Analysis of LMSU (Lomonosov Moscow State University) Nuclear Decay-Rate Data: Further Indication of r-Mode Oscillations in an Inner Solar Tachocline. Astropart. Phys., 2012, 35, pp. 755–758; arXiv: 1203.3107 [astro-ph.SR].
  • Pomm´e S., Pelczar K. Neutrino-Induced Decay: A Critical Review of the Arguments. Space Sci. Rev., 2022, 218, #64; doi.org/10.1007/s11214-022-00932-0.
  • Baurov Yu.A., Sobolev Yu.G., Ryabov Yu.V., Kushniruk V.F. Experimental investigations of changes in the rate of beta decay of radioactive elements. Phys. Atom. Nucl., 2007, 70, pp. 1825–1835. DOI: 10.1134/S1063778807110014
  • Planck Collaboration: Akrami Y., Arroja F., Ashdown M., Aumont J., Baccigalupi C., et al. Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys., 2020, 641, A1, 56 p. arXiv: 1807.06205 [astro-ph.CO].
  • Einstein A., Mayer W. Systematische Untersuchung ¨uber kompatible Feldgleichungen, welche in einem Riemannschen Raume mit Fernparallelismus gesetzt werden k¨onnen. Sitzungsber. preuss. Akad. Wiss., phys.- math. Kl., 1931, pp. 257–265.
Еще
Статья научная