Falsification of gravity theories from the form of dark spots on black hole images

Бесплатный доступ

Visual images of supermassive black holes M87* and SgrA* have been successfully registered recently by the international collaboration Event Horizon Telescope. This registration opens the unique possibility for verification (or falsification) of modified gravity theories in the strong filed limit when gravitational field is dominated over astrophysical factors. This verification is crucially important for physical interpretation of astrophysical and cosmological observations of the Universe and for understanding the physical origin of enigmatic dark matter and dark energy. The accuracy of Event Horizon Telescope is sufficient for demonstration of the quantitative agreement of the obtained dark spot images of both black holes with the General Relativity prediction. In particular, the forms of dark spots on the Event Horizon Telescope images correspond to the fast black hole rotation of the supermassive black holes M87* and SgrA*. Meantime, the Event Horizon Telescope accuracy is insufficient for the verification of the modified gravity theories. In the observable future this verification would be possible in realization of the international project of the Space Observatory Millimetron, which angular resolution in few orders of magnitude exceeds the corresponding one of the Event Horizon Telescope.

Еще

Gravitation, black holes, cosmology

Короткий адрес: https://sciup.org/142241766

IDR: 142241766   |   DOI: 10.17238/issn2226-8812.2024.1.50-53

Список литературы Falsification of gravity theories from the form of dark spots on black hole images

  • Event Horizon Telescope Collaboration. M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J., 2019, 875, L1.
  • Event Horizon Telescope Collaboration. M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J., 2019, 875, L2.
  • Dokuchaev V.I. Physical origin of the dark spot at the image of supermassive black hole SgrA* revealed by the EHT collaboration. Astronomy, 2022, 1(2), pp. 93–98.
  • Dokuchaev V.I., Nazarova N.O. Modeling the motion of a bright spot in jets from black holes M87* and SgrA*. Gen. Relativ. Gravit., 2021, 53, 83.
  • Dokuchaev, V.I., Nazarova N.O. Silhouettes of invisible black holes. Physics-Uspekhi, 2020, 63, pp. 583–600.
  • Dokuchaev V.I., Nazarova N.O. Event horizon image within black hole shadow. J. Exp. Theor. Phys., 2019, 128, pp. 578–585.
  • Dokuchaev V.I. To see invisible: image of the event horizon within the black hole shadow. Int. J. Mod. Phys. D, 2019, 28, 1941005.
  • Dokuchaev V.I., Nazarova N.O., Smirnov V.P. Event horizon silhouette: Implications to supermassive black holes M87* and SgrA*. Gen. Relativ. Gravit., 2019, 51, 81.
  • Reynolds C.S. Observing black holes spin. Nature Astronomy, 2019, 3, pp. 41–47.
  • Nokhrina E.E., Gurvits L.I., Beskin V.S., Nakamura M., Asada K., Hada K. M87 black hole mass and spin estimate through the position of the jet boundary shape break. MNRAS, 2019, 489, pp. 1197–1205.
  • Event Horizon Telescope Collaboration. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J., 2022, 930, L12.
  • Bardeen J.M. Timeline and Null Geodesics in the Kerr Metric. In Black Holes; DeWitt C., DeWitt B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 217–239.
  • Bisnovatyi-Kogan G.S., Tsupko O.Yu. Shadow of a black hole at cosmological distances. Phys. Rev. D, 2018, 98, 084020.
  • Blandford R.D., Znajek R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astr. Soc., 1977, 179, 433.
  • Tchekhovskoy A., Narayan R., McKinney J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc., 2011, 418, L79–L83.
  • Tchekhovskoy A., McKinney J.C., Narayan R. General Relativistic Modeling of Magnetized Jets from accretion Black Holes. Journal of Physics Conference Series, 2012, 372, 012040.
  • McKinney J.C., Tchekhovskoy A., Blandford R.D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astr. Soc., 2012, 423, pp. 3083–3117.
  • Ressler S.M., Tchekhovskoy A., Quataert E., Chandra M., Gammie C.F. Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion. Mon. Not. R. Astr. Soc., 2015, 454, pp. 1848–1870.
  • Ressler S.M., Tchekhovskoy A., Quataert E., Gammie C.F. The disc-jet symbiosis emerges: modelling the emission of Sagittarius A* with electron thermodynamics. Mon. Not. R. Astr. Soc., 2017, 467, pp. 3604–3619.
  • Foucart F., Chandra M., Gammie C.F., Quataert E., Tchekhovskoy A. How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? Mon. Not. R. Astr. Soc., 2017, 470, pp. 2240–2252.
  • Ryan B.R., Ressler S.M., Dolence J.C., Gammie C.F., Quataert E. Two-Temperature GRRMHD Simulations of M87. Astrophys. J., 2018, 864, 126, 13 pp.
  • Kardashev N.S., Novikov D., Lukash V.N., Pilipenko S.V., Mikheeva E.V., Bisikalo D.V., Wiebe D.S., Doroshkevich A.G., Zasov A.V., Zinchenko I.I. Review of scientific topics for the Millimetron space observatory. Phys. Usp., 2014, 57, pp. 1199–1228.
Еще
Статья научная