Features of processes of high-speed milling with a complex profile tool in the processing of aluminum alloys and composite materials

Автор: M.S. Vakulin, Yu.I. Gordeev, V.B. Yasinsky, A.S. Binchurov, P.V. Timoshev

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Technological processes and material science

Статья в выпуске: 3 vol.24, 2023 года.

Бесплатный доступ

Complex computational and experimental studies substantiate rational modes of milling of complex contour equiaxed surfaces with high accuracy of shape, dimensions and roughness parameters. Bars made of nanostructured carbide composite (produced by extrusion of WC-Co-Al2O3 bimodal powder mixtures) with increased strength, crack resistance and heat resistance were used as a workpiece material for the manufacture of new original tool designs. The combination of these properties is a necessary prerequisite for the effective operation of the developed designs of multi-blade cutters at high cutting speeds and under conditions of variable cyclic loads. A more complex kinematics of the joint rotational movement of the tool during milling dictates the need for new approaches when assigning rational cutting modes. To obtain reliable calculation formulae, numerical experiments were previously carried out, including simulation of the machining process using the VisualStudio integrated development environment, which supports Windows- Forms technology. The ability to display graphical 3D objects was implemented using an additional software product in the form of the Open CASCADE geometric core. Numerical experiments using MathCAD software products and based on the analytical provisions proposed in the work made it possible to evaluate the influence of cutting conditions, geometric parameters of the cutting part of the tool (profile and number of teeth), kinematics of relative movement in the “tool – part” system on the shape of surfaces and contour parameters (roughness) obtained during milling. A technique, algorithm and program for the automated calculation of cutting conditions have been developed, which have been verified during full-scale experiments and the manufacture of complex profile parts from aluminum alloys for drives of aerospace products (in the form of an equiaxial profile and parts of a pinion transmission of guidance mechanisms). At the same time, on the basis of a 3D model of products, control programs for CNC machines were created using MasterCAM. The practical significance and technical and economic efficiency of the proposed design and technological solutions is to increase productivity and reduce the complexity of processing (in comparison with the basic options) through the use of new multi-edge carbide tools for high-speed milling (including when processing composite materials).

Еще

Milling, hard metal tools, mathematical modeling, complex surfaces, aluminum and titanium alloys, composites, processing quality

Короткий адрес: https://sciup.org/148329701

IDR: 148329701   |   DOI: 10.31772/2712-8970-2023-24-3-570-588

Список литературы Features of processes of high-speed milling with a complex profile tool in the processing of aluminum alloys and composite materials

  • De Oliveira F. B. et al. Size effect and minimum chip thickness in micromilling. International Journal of Machine Tools and Manufacture. 2015, Vol. 89, P. 39–54. Doi: https://doi.org/10.1016/j.ijmachtools.2014.11.001.
  • Chuzhoy L., Devor R. E., Kapoor S. G. et al. Microstructure-level modeling of ductile iron machining. J. Manuf. Sci. Eng. 2002, Vol. 124, No. 2, P. 162–169. Doi: https://doi.org/10.1115/ 1.1455642.
  • Cuba Ramos A., Autenrieth H., Strauß T. et al. Characterization of the transition from ploughing to cutting in micro machining and evaluation of the minimum thickness of cut. J. Mater. Process. Technol. 2012, Vol. 212, No. 3, P. 594–600. Doi: https://doi.org/10.1016/j.jmatprotec.2011.07.007.
  • Hideaki O., Koji U., Ippei K. et al. High speed milling processes with long oblique cutting edges. J. Manuf. Process. 2015, Vol. 19, P. 95–101. Doi: https://doi.org/10.1016/j.jmapro.2015.06.004.
  • Patraev E. V., Vakulin M. S., Gordeev Yu. I., Yasinsky V. B. [High-speed micro-milling of parts made of composite materials and aluminum alloys]. Proceedings of Universities of Mechanical Engineering. 2021. No. 12 (741), P. 62–72. Doi: doi: 10.18698/0536-1044-2021-12-62-72. Doi: 10.18698/0536-1044-2021-12-62–72.
  • Vorontsov A. L., Sultan-Zade N. M., Albagachiev A. Yu. [Development of a new cutting theory. 1. Introduction]. Vestnik Mashinostroeniya. 2008, No. 1, P. 57–67. Doi: https://www.elibrary. ru/item.asp?id=9947574.
  • Vogler M. P., Devor R. E., Kapoor S. G. On the modeling and analysis of machining performance in micro-end milling. J. Manuf. Sci. Eng. 2004. vol. 126, no. 4, pp. 685–694, doi: https://doi.org/10.1115/1.1813470.
  • Hideaki O, Koji U, Ippei K, Junichi H, Yasuhiro N. High speed processes with long oblique cutting edges. Journal of Manufacturing Processes. 2015, Vol. 19, P. 95–101. Doi: https://doi.org/10.1016/j.jmapro.2015.06.004.
  • Furukawa Y., Moronuki N. Effect of material properties on ultra precise cutting processes. Ann. CIRP 1988, Vol. 37 (1), P. 113–116. Doi: https://doi.org/10.1016/S0007-8506(07)61598-4.
  • Cheng K., Huo D. Micro-Cutting Fundamentals and Applications, 1th ed., Wiley, United Kingdom, 2013, 348 p.
  • Kim J., Kim S. D. Theoretical analysis of micro-cutting characteristics in ultraprecision machining. J. Mater. Process. Technol. 1995, Vol. 49 (3–4), P. 387–398. Doi: https://doi.org/10.1016/0924-0136(94)01345-2.
  • Chae J., Park S. S., Freiheit T. Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf. 2006, Vol. 46, P. 313–332. Doi: https://doi.org/10.1016/j.ijmachtools.2005.05.015.
  • Wang Z., Kovvuri V., Araujo A. et al. Built-up-edge effects on surface deterioration in micromilling processes. J. Manuf. Process. 2016, Vol. 24, P. 321–327. Doi: https://doi.org/10.1016/j.jmapro.2016.03.016.
  • Niu F. Jiao, Cheng K. An innovative investigation on chip formation mechanisms in micromilling using natural diamond and tungsten carbide tools. J. Manuf. Process. 2018, Vol. 31, P. 382–394. Doi: https://doi.org/10.1016/j.jmapro.2017.11.023.
  • Binchurov A. S. et al. Influence of cutting modes on power characteristics of rotational turning by multifaceted cutters. IOP Conference Series: Materials Science and Engineering (IOP Publishing 537 No. 3). 2019, P. 032101. Doi: 10.1088/1757-899X/537/3/032101.
  • Andryushchenko S. A., Rostovtsev P. A., Roshchupkin S. I. [Experimental study of the influence of machining strategies on surface roughness when milling aluminum alloys with end mills]. Sovremennye tekhnologii: problemy i perspektivy. 2019, P. 11–15 (In Russ.).
  • Trusov V. N., Zanov O. I., Shikin V. V. [Investigation of the parameters of the milling process of aluminum alloy D16T]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2012, No. 3 (35), P. 155–162 (In Russ).
  • Kulikov M. Yu., Inozemtsev V. E., Bocharov A. A. [Study of the process of shaping when combining milling and electrochemical processing of aluminum]. Metalloobrabotka. 2015, No. 6 (90), P. 50–53 (In Russ.).
  • Demin A. S., Lavrentiev S. V. [DLC coated cutting tool for aluminum alloy machining]. Problems, prospects and directions of innovative development of science: Sat. articles of the International scientific and practical conference (Omsk, November 24, 2017), Part 3, Sterlitamak, AMI, 2017, P. 116–118 (In Russ.).
  • Kovalevsky A. V. [Choice of rational milling modes for processing aluminum alloys]. Omskiy nauchnyy vestnik. 2008, No. 4 (73), P. 64–66 (In Russ.).
  • Vavilin V. A., Pasechnik K. A., Pushkarev A. Yu., Amelchenko N. A. [Features of mechanical processing of polymer composite materials]. Aktual'nye problemy aviatsii i kosmonavtiki. 2018, Vol. 1, No. 14, P. 12–14 (In Russ.).
  • Abd Halim N. F. H., Ascroft H., Barnes S. Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon fibre reinforced plastic (CFRP). Procedia Engineering. 2017, Vol. 184, P. 185–191. Doi: https://doi.org/10.1016/j.proeng.2017.04.084.
  • Meshkas A. E., Makarov V. F., Shirinkin V. V. [Technologies to improve the efficiency of processing composite materials by milling]. Izvestiya Tul'skogo gos. un-ta. Tekhnicheskie nauki. 2016, No. 8-2, P. 291–299 (In Russ.).
  • Sturov A. A., Chashchin N. S. [Machining of a composite material using a robotic complex based on the Kuka KR210 robot]. Vestnik Irkutskogo gos. tekh. un-ta. 2019. V. 23, no. 4 (147), p. 743–750 (In Russ.).
  • Minibaev M. I., Raskutin A. E., Goncharov V. A. Features of the technology for manufacturing samples from PCM on CNC machines (review). Proceedings of VIAM. 2019, No. 1 (73), P. 105–114. Doi: 10.18577/2307-6046-2019-0-1-105-114.
  • Raskutin A. E., Khrulkov A. V., Girsh R. I. Technological features of mechanical processing of composite materials in the manufacture of structural parts (review). Proceedings of VIAM. 2016, No. 9 (45), P. 106–118. Doi: 10.18577/2307-6046-2016-0-9-12-12.
  • Gordeev Yu. I. et al. [Influence of kinematic and technological parameters of rotary turning by multifaceted cutters on chip formation and surface roughness]. Siberian journal of science and technology. 2017, Vol. 18, No. 2, P. 379–386 (In Russ.).
  • Gordeev Y. I., Yasinsky V. B., Spirin E. A. et al. Simulation of high-speed machining processes by multi-edge mills. Journal of Physics: Conference Series. – IOP Publishing, 2022, Vol. 2373, No. 3, P. 032012. Doi: 10.1088/1742-6596/2373/3/032012.
  • Binchurov A. S. et al. 2019 Influence of cutting modes on power characteristics of rotational turning by multifaceted cutters. IOP Conference Series: Materials Science and Engineering (IOP Publishing 537 № 3). P. 032101. Doi: 10.1088/1757-899X/537/3/032101.
  • Timchenko A. I. Tekhnologiya izgotovleniya detaley profil'nykh besshponochnykh soedineniy [Technology for the manufacture of details of profile keyless joints]. Moscow, VNIITEMR Publ., 1988, 160 p.
  • 31.Vakulin M. S., Gordeev Yu. I., Yasinsky V. B. Design of tools with the cutting part of the original profile for high-speed milling. IOP Conference Series: Materials Science and Engineering. 2020, 754(1), P. 012008. Doi: 10.1088/1757-899X/754/1/012008.
  • Gordeev Y. I. et al. Investigation of nanostructured hard metal composites obtained from powder mixtures (WC-Co)-Al2O3. Journal of Physics: Conference Series. – IOP Publishing. 2022, Vol. 2373, No. 3, P. 032025. Doi: 10.1088/1757-899X/754/1/012008.
  • Gordeev Y. I., Yasinsky V. B., Binchurov A. S. et al. Combined Application of Composite Powders WC-Co and Additives of Nanoparticles as an Effective Method of Improving the Properties of Hard Metals. Key Engineering Materials. 2018, Vol. 769, P. 134–140. Doi: https://doi.org/10.4028/www.scientific.net/KEM.769.134.
Еще
Статья научная