Fermion with three mass parameters in the uniform magnetic field
Автор: Ovsiyuk E., Safronov A., Koralkov A., Voynova Ya.
Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc
Рубрика: Научные статьи
Статья в выпуске: 4 (62), 2023 года.
Бесплатный доступ
Recently, models for a spin 1/2 particle with two (or three) mass parameters were developed. Specific features of these models are as follows. For corresponding two (or three) bispinors in absence of external fields, separate Diraclike equations are derived, they differ in masses. However, in presence of external electromagnetic or gravitational fields with non-vanishing Ricci scalar, the wave equation for bispinors does not split into separated equations but makes quite a definite mixing of two (or three) equations arises. In the present paper, the model of a fermion with three mass parameters is studied in presence of the external uniform magnetics field. After performing a diagonalizing transformation, three separate equations are obtained for particles with different anomalous magnetic moments. Their exact solutions and generalized energy spectra are found
Fermion with three mass parameters, magnetic field, anomalous magnetic moment, exact solutions, energy spectrum
Короткий адрес: https://sciup.org/149143597
IDR: 149143597 | DOI: 10.19110/1994-5655-2023-4-77-87
Текст научной статьи Fermion with three mass parameters in the uniform magnetic field
In the context of existence of the similar neutrinos of different masses, we examine a possibility within the theory of relativistic wave equations to describe particles with several mass parameters. In general, existence of more general wave equations than commonly used ones is well known within the Gel’fand-Yaglom formalism – see references [1-5].
In particular, models for a spin 1/2 particle with two and three mass parameters were developed [6–15]. Specific features of these models are as follows. For two (or three) bispinors, in absence of external fields separate Dirac-like equations are derived, they differ in masses. However, in presence of external electromagnetic field or gravitational field with non-vanishing Ricci scalar, the wave equation for bispinors does not split into separated equations, instead a quite definite mixing of two (or three) equations arises. It was shown that generalized equations for Majorana particle with several mass parameters exist as well. Such generalized Majorana equations are not trivial if the Ricci scalar does not vanish.
In the present paper, the model of a fermion with three mass parameters is studied in presence of the external uniform magnetics field. After applying the diagonalizing trans- formation, three separate equations are obtained effectively for particles with different anomalous magnetic moments. Their exact solutions and generalized energy spectra are found.
1. General theory in presence of electromagnetic and gravitational fields
We start with the system of equations for a fermion with 3 mass parameters [12, 15]:
iY a ( x )[ d a + Г a ( x ) + ieA a ( x )]Ф 1 ( x ) -
- M1 Ф1(x) + Y1S(x)Ф(x) = 0, iY a ( x )[ da +Г a ( x ) ieAa (x )]Фз( x) -
- M2Ф2(x) + Y2S(x)Ф(x) = 0, iY a ( x )[ da + Г a ( x ) + ieAa (x )]Фз( x) -
- M 3 Ф з ( x ) + Y 3 S( x )Ф( x ) = 0 , (1)
where the notations are used
Y 1 = ЗдЗ c 2 ( A 1 - c 2 ) , i = 1 , 2 , 3 , L = c 1 + 3 , 3 M у о
Ф( x ) = L 1 Ф 1 ( x ) + L 2 Ф 2 ( x ) + L з Ф з ( x ) ,
Y2L i = — ( A2 - c 2) x
-
21 3 M ( 2 2 )
-
- L ( a 2 + b 2 ) + c 2 - c 2 ( A 2 + A 3 ) + A 2 A 3 L ( A 1 - A 2 )( A 1 - A 3 )
Y 2 L 2 = 3 M ( A 2 - c 2 ) x
-
- L ( a 2 + b 2 ) + c 2 - c 2 ( A 3 + A 1 ) + A 3 A 1 L ( A 2 - A 3 )( A 2 - A 1 )
Y 2 L 3 = 3 M ( A 2 - c 2 ) x
-
- L ( a 2 + b 2 ) + c 2 - c 2 ( A 1 + A 2 ) + A 1 A 2
L ( A 3 - A 1 )( A 3 - A 2 )
Y 3 L 1 = 3 M ( A 3 - c 2 ) x
-
- L ( a 2 + b 2 ) + c 2 - c 2 ( A 2 + A 3 ) + A 2 A 3
L ( A 1 - A 2 )( A 1 - A 3 )
Y 3 L 2 = 3 M ( A 3 - c 2 ) x
-
- L ( a 2 + b 2 ) + c 2 - c 2 ( A 3 + A 1 ) + A 3 A 1
L ( A 2 - A 3 )( A 2 - A 1 )
S( x ) = -ieF ae ^ ae ( x ) + 4 R ( x ) ,
-L|c 4 | 2 - Lc 3 | 2 + c 2 - c 2 ( A 2 + A 3 ) + A 2 A 3
Lc 2 c 3 ( A 1 - A 2 )( A 1 - A 3 )
-L|c 4 1 2 - L|c 3 | 2 + c 2 - c 2 ( A 3 + A 1 ) + A 3 A 1 Lc 2 c 3 ( A 2 - A 3 )( A 2 - A 1 )
-
- L|c 4 | 2 - L|c 3 | 2 + c 2 - c 2 ( A 1 + A 2 ) + A 1 A 2 Lc 2 c 3 ( A 3 - A 1 )( A 3 - A 2 )
With the notation |c 4 | = a, |c 3 | = b, the mixing matrix in the equation (1) is specified by the relations
Y 3 L 3 = 3 M ( A 3 - c 2 ) x
-L ( a 2 + b 2 ) + c 2 - c 2 ( A 1 + A 2 ) + A 1 A 2
L ( A 3 - A 1 )( A 3 - A 2 )
We will consider eq. (1) in the cylindrical coordinates and tetrad dS2 = dt2 - dr2 - r2dф2 - dz2, xa = (t,r,ф,z) ,
/1 0 00
в , л_ 10 1 0 0
e(a)(x) [0 0 1 /r 0I
00 01
4 „
Y 1 L 1 = 3 M ( A 1 - c 2 ) x
-L ( a 2 + b 2 ) + c 2 - c 2 ( A 2 + A 3 ) + A 2 A 3 L ( A 1 - A 2 )( A 1 - A 3 )
YL = ^-( Ax - c 2) x
-
12 3 M 1 27
-L ( a 2 + b 2 ) + c 2 - c 2 ( A 3 + A 1 ) + A 3 A 1
L ( A 2 - A 3 )( A 2 - A 1 )
Y1L3 — —— ( A i — c ?) x
-
13 3 Mv 1 27
-L ( a 2 + b 2 ) + c 2 - c 2 ( A 1 + A 2 ) + A 1 A 2 L ( A 3 - A 1 )( A 3 - A 2 )
Ricci rotation coefficients are as follows: Y ab 0 = 0 , Y ab 1 = 0 , y 122 = -Y 212 = 1 /r, Y ab 3 = 0 • The external magnetic field directed along the axis x 3 is determined as follows
А ф = - 2 Br 2 , F 12 ( x ) = F rф = -Br,
-ieF ae ( x ) = -ieF 12 ( x ) y 1 ( x ) y 2 ( x ) = ieBY 1 Y 2 =
= ieB


= eB S •
So, the main equation (1) takes the form (we simplify the notation, eB ^ B )
iY 0 d + iY 1 d + i2 " ( + iBr " ) + iY 3 f! Ф 1
dt dr r \дф 2 / dz
-
-M Ф 1 + B S Y L ( L 1 Ф 1 + L 2 Ф 2 + L 3 Ф 3 ) = 0 ,
'iY 0 d + iY 1 d + iY 2 ( d + B ) + iY 3 d l ф 2 at dr r \дф 2 ) dz
or
—M Ф 2 + B E Y 2 ( L 1 Ф 1 + L 2 Ф 2 + L 3 Ф 3 ) = 0 ,
iY 0 d + iY 1 It + iY ∂t ∂r r
∂ Br 2
(дф + i 2)
∂
+ iY 3^- Ф 3 -
—M Ф 3 + B E Y 3 ( L 1 Ф 1 + L 2 Ф 2 + L 3 Ф 3 ) = 0 •
For three involved bispinors, we will use the following substitutions
ϵγ 0 |
+ |
iγ 1 |
∂ ∂r |
γ 2 - rp ( r ) - |
kγ 3 |
M |
ϵγ 0 |
+ |
iγ 1 |
∂ ∂r |
γ 2 - rp ( r ) - |
kγ 3 |
M |
ϵγ 0 |
+ |
iγ 1 |
∂ ∂r |
γ 2 - rp ( r ) - |
kγ 3 |
M |
Ф 1 + p 1 EФ 1 = 0 ,
Ф2+ p 2 EФ2 = 0 ,
Ф 3 + p 3 EФ 3 = 0 •
Ф 1 = ■. Ф i ( f 1 ,f 2 ,f 3 ,f 4 )
Ф 2 = ■ ег тф ег к ( g 1 ,g 2 ,g 3 ,g 4 ) t ,
Ф з = e- it^ e* 1 ( h 1 ,h 2 ,h 3 ,h 4 ) t ,
Thus, after transformation, three separate equations are obtained effectively for particles with different anomalous magnetic moments.
2. Solving the basic equation
where () t stands for transpose. Then the previous system reads
£Y 0 + iY 1 J-— — p ( r ) — kY 3 — M ∂r r
Ф 1 +
+( M — M 1 )Ф 1 + B E Y 1 ( L 1 Ф 1 + L 2 Ф 2 + L 3 Ф 3 ) = 0 ,
£Y 0 + iY 1 о Y—p ( r ) — kY 3 — M ∂r r
Let us briefly describe the procedure for solving the basic equation (2):
2 Y fл
£Y 0 + iY \— ст ( r ) — kY 3 — M + Г Z
∂r r f4
f 2 1 = 0 • f 3
Ф 2 +
+( M — M 2 )Ф 2 + B E Y > ( L 1 Ф 1 + L 2 Ф 2 + L 3 Ф 3 ) = 0 ,
Using the spinor basis for the Dirac matrices [3, 6], we obtain four equations
£Y 0 + iY 1 Y—p ( r ) — kY 3 — M ∂r r
Ф 3 +
+( M — M 3 )Ф 3 + B E Y ; ( L 1 Ф 1 + L 2 Ф 2 + L 3 Ф 3 ) = 0 ,
—
i ( 4—+ p^) f 4 + ( £ + k ) f 3 + (Г — M ) f 1 = 0 , dr
—
i ( 4 p\ f 3 + ( £ — k ) f 4 — (Г + M ) f 2 = 0 , dr
where
/1 0
/ \ , 1R 2 v I 0 — 1
p ( r ) = m + - Hr , E = 0 0
0 0
1 0
— 1
Using the shortening notations for elements of the mixing matrix
Zkj = (BYk) Lj = dk Lj, i ( 4—+ p^ f2 + (£ — k)f1 + (Г — M)f3 = 0, dr i ( 4p^) f 1 + (£ + k)f2 — (Г + M)f4 = 0 • (3) dr
Let dr ± p(r) = D±. Equations (3) can be considered as two linear subsystems and their solutions are we present the system as follows д Ф k + Zkj Ф j = 0,
f 1 = + i
( £ + k ) D + f 2 + (Г — M ) D + f 4
(Г — M ) 2 — ( £ 2 — k 2 ) ’
d = E -
£Y 0 + iY 144"— — p ( r ) — kY 3 — M ∂r r
( £ — k ) D - f 1 — (Г + M ) D - f 3
+ i (Г + M ) 2 — ( £ 2 — k 2 )
The mixing matrix should be reduced to a diagonal form by a linear transformation
Ф = s Ф , д Ф = SZS - 1 Ф ,
f 4 i (Г + M ) 2 — ( £ 2 — k 2 ) •
Eliminating the variables f 1 , f 3 in the equations above, we obtain
As a result we get
(ФЛ |
µ 1 |
0 |
0 |
/ ФЛ |
|||
E - 1 d |
Ф 2 |
+ |
0 |
µ 2 |
0 |
Ф 2 |
= 0 , |
\ Ф3/ |
0 |
0 |
µ 3 |
\ Ф3/ |
Г + M £ - k = D - D + f 2
Г — Mf 2 + Г — Mf 4 (Г — M ) 2 — ( £ 2 — k 2 ) +
£ - k D - D + f 4
+ Г — M (Г — M ) 2 — ( £ 2 — k 2 ) , ()
r + M = D - D + f 2
€ + kf 4 (Г - M ) 2 - ( € 2 - k 2 ) +
Q 1 = eB Un - 2 + Г 2 - M 2 -
Г - M D - D + f 4
+ € + k X (Г - M ) 2 - ( € 2 - k 2 ) ’
- k 2 + € 2 - 2Г V € 2 - k 2 •
Subtract the second equation from the first equation and substitute the resulting expression for f 2 into (4), so we obtain the fourth order equation for f 4 :
The variant II differs only in sign at the parameter Г . Thus, we are to solve two second-order differential equations:
d 4 f 4 + dr 4
e 2 B 2
r 2
- eB (2 m - 1) -
- 2(Г 2 - M 2 - k 2 + € 2 ) +
2 m ( m + 1) "| d 2 f4 dp" +
r 2
+
e 2 B 2 r
-
4 m ( m + 1)
df 4 + I e 4 B 4 dr 16
+ eB [ eB (2 m - 1) + 2(Г 2 - M 2 - k 2 + € 2 )] r 2 -
d 2 B 2 e 2 r 2 1
dr 2-- — + eB mm - J ■ I - M 2 - k 2 +
+ , 2 + 2Г■ • k 2 - ] f = 0 , (6)
d 2 B 2 e 2 r 2 1
dr 2-- — + eB m- - 2j+r 2 - M 2 - k 2 +
+ € 2 - 2Г VS-k ? - m ( m 2 + *> ] g = 0 •
-eB (2 m- 1)(Г2-M 2-k 2+€ 2) - (Г2 +M 2+k 2-€ 2)2 + e2B2
+4Г 2 M 2 4—(6 m 2 - 2 m - 1) +
m(m + 1)[eB(2m - 1) + 2(Г2 - M2 - k2 + €2)] +r- m(m - 2)(m + 3)(m + 1) , M
Г 4-------------- f 4 = 0 • (5)
Similarly, we can obtain the fourth order equation for the function f 2 . Equations for f 2 and f 4 turn out to be the same. To study the fourth order equation, we will use the factorization method:
F4 (r) f (r) = Л( r ) b2( r ) f (r) = 0, f2(r)= d + P0r2 + P1 + P2 , dr2
b2(r) = + Q0r2 + Q1 + dr2
Computing the product
They differ only in sign at the parameter Г . Consider the equation (6). Let us make the change of the variable x = eBr 2 / 2 . Solutions are constructed in the form f = x a e bx F . Taking into account the constraints a = -m/ 2 , ( m + 1) / 2 and b = - 1 / 2 , we obtain the equation for F :
xd-F + (1 + 2 a - x dx 2 2
dF dx
- 4 e 1 B [ eB (4 a + 1) - 4Г V€ 2 - k 2 - (2 m - 1) eB-
- 2(Г 2 - M 2 - k 2 + € 2)j F = 0 •
It is an equation of the confluent hypergeometric type with parameters y=2 a+2,
d2
FI = I + P0r + P1 +--I X dr2
X (+ Q0r2 + Q1 + Д2^ dr2
and equating the result to the operator (5), we find two solutions for sets of numerical coefficients:
I P 0 = - 4 b 2 e 2 , p 2 = -m ( m + 1) ,
P 1 = eB mm - I) + Г 2 - M 2 -
- k 2 + € 2 + 2Г V€ 2 - k 2 ,
II Q 0 = - 4 B 2 e 2 , Q 2 = - m ( m + 1) ,
a = - 4- B [ eB (4 a +1) - 4Г V€ 2 - k 2 - (2 m- 1) eB-
- 2(Г 2 - M 2 - k 2 + € 2 ) ] •
To construct solutions corresponding to bound states, one should use the positive values of the parameter a (for definiteness, we assume that eB > 0 ):
a = -m ( m< 0); a = m ±i > 0 ( m > 0) ^
The polynomial conditions а = -n ( let € 2 - k 2 = A ) provides us with the quantization rule for energy values
_ , 1 m , M2 - Г2 , Г VA , A a + 2 - "2 + 2eB + n = "bB + 2eB^
Hence, using the notation M 2 + 2 eB ( a + 1 / 2 - m/ 2 + n ) = N, we obtain
A = ( VN - Г) 2 > 0 • (7)
ϵ
From (7) we find the formula for the energy values
- к^
M 2 + 2 eB

1 — m A
—+ n)— г
situation of an electrically neutral particle can also be carried out in the case of a particle with three mass parameters.
Depending on the value of a , we have two expressions for N :
3. Diagonalization of the mixing matrix
Let us turn back to the system of three equations
m< 0 , a = — —,
S
- 1
6Y 0 + iY 1т|— — И ( r ) — kY 3 — M ∂r r
Ф 1 +
б 2 — к 2 = [V M 2 + 2 eB (1 / 2 — m + n ) — г] 2 ;
+( d 1 L 1 Ф 1 + d 1 L 2 Ф 2 + d 1 L 3 Ф 3 + ( M - M 1 )Ф 1 ) = 0 ,
m > 0,
m +1 a = 2 ’
S
- 1
6Y0 + iY 1т|—и (r) — kY3 — M ∂r r
Ф 2 +
б 2 — к 2 = [V M 2 + 2 eB (1+ n ) — г] 2 .
+ ( d 2 L 1 Ф 1 + d 2 L 2 Ф 2 + d 2 L 3 Ф 3 + ( M — M 2 )Ф 2 ) = 0 ,
S
- 1
Thus, we obtain two series of energies
I : X =( VN — Г) 2 ; II : X =( VN + Г) 2 .
6Y0 + iY 1т|—и (r) — kY 3 — M ∂r r
Ф 3 +
+ ( d 3 L 1 Ф 1 + d 3 L 2 Ф 2 + d 3 L 3 Ф 3 + ( M — M 3 )Ф з ) = 0 ,
Let us consider a special case of an electrically neutral particle with the magnetic moment (neutron). The transition
or briefly
to the case of a neutral particle can be carried out with the help of simple formal changes, e ^ 0 , X ^ ж, eX ^ Л ,
д = S -
6Y 0 + iY 17?— ~ И ( r ) — kY 3 — M ∂r r
so that
Г = Xe — ^ Г = ЛB. ℏ mc mc2
д Ф k + T kj Ф j = 0 .
No additional calculations are needed. We obtain two second-order equations:
To find the transformation matrix S , which will diagonalize the mixing matrix, we are to study the following equation ST = T 0 S , or in detail
" d^ + (>6—2 + Г)2 — M 2 — 1 1 f = 0, dr2 r2
■£ +( V. к _ Г) 2 — M 2 — mm ±P 1 f = 0 .
dr 2 r 2
General solutions of equations (8) have the form
s11 s12
s21 s22 s23I s31 s32
M
X
M 1 + d 1 L 1 d 2 L 1 d 3 L 1
d 1 L 2
M - M 2 + d 2 L 2
d 3 L 2
f ( r ) = V r ( J m +1 / 2 ( x ) + Y m +1 / 2 ( x )) , x = У ( V. 2 — к 2 + г) 2 — M 2 r ;
g ( r ) = Vr ( J m +1 / 2 ( У ) + Y m +1 / 2 ( У )) , y = У ( V. 2 — к 2 — г )2 — M 2 r.
M
_
d 1 L 3
d 2 L 3
M 3 + d 3 L 3
µ 1
µ 2
0 I / s 11
0 I I s 21
µ 3 s 31
s 12
s 22
s 32
s 13
s 23
s 33
.
Hence we obtain three linear subsystems:
From the form of these equations, we can conclude that the magnetic moment manifests itself in an external magnetic field in a quite definite way: in fact, everything reduces to solutions with cylindrical symmetry for an ordinary free particle with spin 1/2, but with a certain replacement б2 — M2 ^ (V.2 — к2 ± г)2 — M2.
The main manifestation of the magnetic moment of a neutral particle is the modification (spatial scaling) of the wave functions in directions transverse to the magnetic field. Apparently, such a modification of the transverse structure of a neutron beam can be observed experimentally, for example, in neutron Bessel beams. Obviously, the transition to the
( M — M 1 + d 1 L 1 ) s 11 + d 2 L 1 s 12 + d 3 L 1 s 13 = и 1 s 11 , d 1 L 2 s 11 + ( M — M 2 + d 2 L 2 ) s 12 + d 3 L 2 s 13 = И 1 s 12 , d 1 L 3 s 11 + d 2 L 3 s 12 + ( M — M 3 + d 3 L 3 ) s 13 = И 1 s 13 ;
( M — M 1 + d 1 L 1 ) s 11 + d 2 L 1 s 12 + d 3 L 1 s 13 = и 1 s 11 , d 1 L 2 s 11 + ( M — M 2 + d 2 L 2 ) s 12 + d 3 L 2 s 13 = И 1 s 12 , d 1 L 3 s 11 + d 2 L 3 s 12 + ( M — M 3 + d 3 L 3 ) s 13 = И 1 s 13 ;
( M — M 1 + d 1 L 1 ) s 31 + d 2 L 1 s 32 + d 3 L 1 s 33 = И 3 s 31 , d 1 L 2 s 31 + ( M — M 2 + d 2 L 2 ) s 32 + d 3 L 2 s 33 = И 3 s 32 , d 1 L 3 s 31 + d 2 L 3 s 32 + ( M — M 3 + d 3 L 3 ) s 33 = И 3 s 33 .
Here we have three eigenvalue problems
M - M 1 + d 1 L 1 - ц 1 |
d 2 L 1 M - M 2 + d 2 L 2 - ц 1 d 2 L 3 |
d 3 L 1 d 3 L 2 M - M 3 + d 3 L 3 - ц 1/ |
s 11 s 12 s 13 |
= 0 , |
|
d 1 L 2 d 1 L 3 |
|||||
M |
- M 1 + d 1 L 1 - ц 2 |
d 2 L 1 |
d 3 L 1 |
s 21 |
|
d 1 L 2 |
M - M 2 + d 2 L 2 - ц 2 |
d 3 L 2 |
s 22 |
= 0 , |
|
d 1 L 3 |
d 2 L 3 |
M - M 3 + d 3 L 3 - ц 2/ |
s 23 |
||
M |
- M 1 + d 1 L 1 - ц 3 |
d 2 L 1 |
d 3 L 1 |
s 31 |
|
d 1 L 2 |
M - M 2 + d 2 L 2 - ц 3 |
d 3 L 2 |
s 32 |
= 0 . |
|
d 1 L 3 |
d 2 L 3 |
M - M 3 + d 3 L 3 - цг) |
s 33 |
Note that the three rows of the matrix S may be found only up to arbitrary multipliers. The condition for the existence of solutions for these three systems is the vanishing of the determinant
/ M - M1 + d 1L1 - ц det d1L2
d 1 L 3
d 2 L 1 d 3 L 1
M - M2 + d 2 L 2 - ц d 3 L 2 = 0.
d 2 L 3 M - M3 + d 3 L 3 - ц
Let us get the explicit form of the third order equation for parameter µ:
+ M3 (1 - (1 - ^V1 -
λ 1 λ 2 λ 2
= 0 .
-ц 3 + (3 M-Mi-M2 - M3+d i L i+d 2 L 2+d 3 L 3) ц 2+ + [- d 1L 1(2M - M2 - M3) - d2L2(2M - M1 - M3) -
-d 3 L 3 (2 M-M2-M1) - 3 M 2+2( M1 + M2+M3) M -
- (M1 M2 + M1 M3 + M2 M3)] ц+
Let us detail the explicit form of the elements of the mixing matrix. First, we take into account that the parametrization of possible values of the mass parameters Mi = — can be λi simplified. Recall that the roots λi are solutions of the characteristic equation
+d 1L1 (M-M2)(M-M3)+d2L2(M-M3)(M-M1)+ A3 - (c 1 + c2)A2 + (c 1 c2 + a2 + b2)A - (c 1 a2 + c2b2) = 0,
+d3L3(M - M1)(M - M2) +
+(M - M 1)(M - M2)(M - M3) = 0.
Given the relation M i = M/A i , the equation can be transformed into the following form
where c 3 = b > 0 , c 4 = a > 0 . Taking into account the identities
A1 + A2 = c1 + c2 - A3 ,
c 1 a 2 + c 2 b 2
A 1 A 2 =-----7------ ,
λ 3
-Ц 3 +
M3
λ 1 λ 2

+ L 1 d 1 + L 2 d 2 +
we find expressions for A 1 , A 2 in terms of A 3 :
λ 1
c 1 + c 2 - A 3
+ L 3 d 3 Ц 2 +
-ML 1 d 1 ^2 - Al - A_
-
c1 + c2 - A3
-
c 1 a 2 + c 2 b 2 λ 3
-ML 2 d 2 ^2 — a— A3^ -ML 3 d 3 ^2 - a— a2
A2 =
-M 2
+
- 3 M 2 + 2 M 2

-
c 1 + c 2 - A 3 +
+
1 1 1 1 1 1 1 1
λ 1 λ 2 λ 1 λ 3 λ 2 λ 3
c 1 + c 2 - A 3
-
c 1 a 2 + c 2 b2
λ 3
ц+
M 2 L 1 d 1 (1 - 1 ) (1 - 1 ) + λ 2 λ 3
+M2 L 2 d 2 ^1 - — ^1 - +
λ 3 λ 1
+ M 2 L 3 d 3 f1 — — f1 — — + λ 1 λ 2
The value of the root λ 3 may be arbitrary, because the physically meaningful parameter is M 3 = M/A 3 (at an arbitrary M ). The simplest expression for λ 3 is obtained when c 1 = c 2 = 1 . In this case, the cubic equation is simplified
A3 - 2 A2 + (1+ k) A - k = 0, k = a2 + b2.
Its roots are given by the formulas
A 3 = 1, A1 = 2 - ^ V1 - 4 k,
Let us detail the coefficients L i in the expression for
Ф( x ) :
Ф( X ) = L 1 Ф 1 ( X ) + L 2 Ф 2 ( x ) + L з Ф з ( x ) ,
L = 1 + —6, (a2 + b2) = k
< 4 , 0 < 2 ь < 1 .
- 2 k 1
b (A i — A 2)( A i — A 3)
+ 11 — 2( A 2 + A 3) + 4 A 2 A з 2 Lb (A i — A 2)(A i — A 3)
Let us detail the coefficients d i :
- 4Bb d1 = 6M P1
—
11 , d2
2 ) ’ 2
4Bb
6M v 2
—
1A
I/ ’
d 3
—2 k 1
b (A 2 — A 3)(A 2 — A1)
+ 1 1 — 2(A 3 + A 1)+4 A 3 A1
+ 2Lb (A 2 — A 3)(A 2 — A1)
4Bb
6M v 3
—
.
Combinations d i L j appear in the mixing matrix, so the parameter b in the denominators in (10) will be canceled with the parameter b in (11). Also, since the dimension of the quantity B is M 2 (inverse square meter), we can introduce substitutions
—2 k 1
b (A 3 — A 1)( A 3 — A 2)
1 1 — 2( A1 + A 2)+4 A1A 2
2 Lb (A 3 — A1)(A 3 — A 2)
or (we take into account that A 3 = 1 )
L1 =
1 1
b (A1 — 1)(A1
— A 2)
— 2k + 2L ( — 1 + 2A2)
4B = 6rM2 ^ d = M-B^bA, — 1) =
i 6 M2 V 2/
= Mrb ^Ai — I) = MDi, where the quantities Di are dimensionless. With this in mind, the cubic equation (9) is transformed to the form
L 2 =
-----—---- X
b (A2 — 1)(A2 — A1)
—ц3 + M 3 — — — — — a—+ L1D1 + L 2 D 2+
L3 =
X
X
—2 k + 2L(—1 + 2 A1)
-------—------ X
b (1 — A 1)(1 — A2)
—2 k + 2L(1 — 2 A1
— 2A2 + 4A1A2)
+ L 3 D 3 ц 2 + M 2
—L 1 D 1 (2 —
λ 2
—
λ 3
—
—L2 D2 ^2 — A11 — A13) — L3 D3 (2 — A11 —
—
1 λ2
— 3+2

—
11 + 11 + 11
λ 1 λ 2 λ 1 λ 3 λ 2 λ 3
^ +

+ M 3

> 1)+
+ L 2 D 2 (1 - У (1 —
Since the parameter b enters as a multiplier into D 1 , D 2 , D 3 and the denominators of the expressions for the coefficients L 1 , L 2 , L 3 , then in combinations
L 1 D 1 + L 2 D 2 + L 3 D 3 , L 1 D 1 , L 2 D 2 , L 3 D 3
this parameter is reduced. With this in mind, we have the identities
L 1 =
( > 1 — 1)( > 1 — > 2 )
— 2 k + 2 L (2 > 2 —

+ L 3 D 3 (1 - у с -
> 2)+

= 0 .
L 2 =
( > 2 — 1)( > 2 — > 1 )
— 2 k + 2 L (2 > 1 — 1)
The roots of this equation can be found in the form ^ i = M A i , where A i are dimensionless quantities; then the equation for A 1 , A 2 , A 3 takes the form
— A 3 + 3 — >— >— > —+ L i D i + L 2 D 2 + L з D 3 A 2 +
+ —L 1 D 1 ^2 — >— ^ —L 2 D 2 ^2 — —
—
λ 3
—
—L 3 D 3 (2 — ■ 1 1 — > 1 2) — 3 + 2 (£+ 1 2 + ^
3 (1 — > 1 )(1 — > 2 )
x |— 2 k + 2 L (1 —
D 1 = 2(2 > 1 — 1) , D 2 = where
> 1 = 2 (1 — V 1 — 4 k ) , k ^ f 1 , 4 j , L = 1 + v
2 > 1 — 2 > 2 +4 > 1 > 2 ) j ,
2(2 > 2 — 1) , D 3 = 2 ,
> 2 =2 (1 + V 1 — 4 k ) ,
=, ( a 2 + b 2 ) = k < 2
6 v ' 4
—
1 1 I 1 1 I 1 1 λ 1 λ 2 λ 1 λ 3 λ 2 λ 3
A+
+ L i D i

Also, we should take into account the identities
2 > 1 — 1 = — V1 — 4 k, 2 > 2 — 1 = +V1 — 4 k, > 1 — > 2 = —V 1 — 4 k, > 2 — > 1 = + V 1 — 4 k,
> 1 + > 2 = 1 , > 1 — 1 = —> 2 , > 2 — 1 = —> 1 ,
+ L 2 D 2 (1 — У (1 — £)+
+ L 3 D 3 ( 1 — . ( 1 — . +
λ 1 λ 2
1 — 2 > 1 — 2 > 2 +4 > 1 > 2 = 4 k — 1 , > 1 > 2 = k,
then we get simpler expressions
L 1 =

L 2 =
(1 + V 1 — 4 k ) V 1 — 4 k 2
— 2 k + 2 L V 1 — 4 k I ,
Allow for that > 3 = 1 , then we get
(1 + V 1 — 4 k ) V 1 — 4 k
L 3 = k { — 2 k +2 L
2 k + 2 L V 1 — 4 k \ ,
A 3 + 2 — >> —+ L 1 D 1 + L 2 D 2 + L 3 D 3 A 2 +
+
L 1 D 1 ^1 — — + L 2 D 2 ^1 — — +
+ L 3 D 3 (2 — — ^)+3 — 2(^ + ^ + 1) +
λ 1 λ 2 λ 1 λ 2
D 1 = — - V 1 — 4 k, D 2 = +“ V 1 — 4 k, D 3 = -,
L = 1 + V 6 , 0 < b< 2 .
In this way, we arrive at the following cubic equation for A :
A 3 + A A 2 + B A + C = 0 ,
11 1 1
λ 1 λ 2 λ 1 λ 2
A —
where the coefficients are (take into account the properties of the roots λ 1 , λ 2 )
A = 2 — k + L 1 D 1 + L 2 D 2 + L 3 D 3 , C = L 3 D 3 ,
B — -L 1 D 1
-
L 2 D 2
1 - 71 - 4 k
1 + 71 - 4 k
1 + 71 - 4 k
1 - 71 - 4 k
-
+ L3D3 2
-
г +1. k
we obtain
2k
A3 +
-
k
1 A2+
Using identities
+
1+ 1
6 1 - 4k
-
. 2 k - l71 - 4 k
LiDi — ------. r,
1 + 71 - 4 k
, _ 2k + l71 - 4k
L2D2 — ------, r,
2 2 1 - xl 4k
2(V6 + b) 2 k
) r A+
6 1 - 4 k
+ l1+2( 76 + b 2 k
) r — 0, (12)
L 3 D 3 —
-
1 - 4k
1 + l — )r'
we transform the cubic equation to a simpler form
2k
A3 +
-
k
1 A2
+ 1+1
-
l1 - 4 k 2 k
r A+
where
0 < k < 4, 0
For definiteness, we set b 1 — 0 , b 2 — 1 , b 3 — 2 . The pa-
rameter r was introduced by the relation 4 B
6 rM 2
1 - 4k
+ 1+ l "ЙГ r — 0.
Allowing for the expression for the parameter l :
l — TL
2(^6 + b)’
from physical considerations, we will assume that the dimensionless parameter r is small. Below we will follow several situations r — 10 _ 5 , r — 10 _ 3 , r — 1 . The last value |r| — 1 corresponds to a very strong magnetic field. Numerical study showed that dependence of the roots A i upon parameter b G (0 , 2) is very insignificant. By this reason below we take the value b — 0 . Let us construct tables of values for the roots A i , A 2 , A 3 equations (12) (see tables 3-5).
Table 3
Таблица 3
Значения корней Д i , i = 1 , 2 , 3 уравнения (12) для b = 0 , r = 10 5
The values of the roots Д i , i = 1 , 2 , 3 of equation (12) for b = 0 , r = 10 5
k |
0.24 |
0.22 |
0.208 |
0.204 |
0.20 |
0.16 |
0.10 |
0.06 |
0.02 |
0.01 |
A i |
0.667 |
0.485 |
0.419 |
0.400 |
0.382 |
0.250 |
0.127 |
0.069 |
0.021 |
0.010 |
A 2 |
1.500 |
2.060 |
2.389 |
2.502 |
2.618 |
3.999 |
7.873 |
14.598 |
47.979 |
97.990 |
A 3 |
-0.00001 |
-0.00001 |
-0.00001 |
-0.00001 |
-0.00001 |
-0.00002 |
-0.00002 |
-0.00004 |
-0.00012 |
-0.00024 |
Table 4
The values of the roots Д i , i = 1 , 2 , 3 of equation (12) for b = 0 , r = 10 ~ 3
Таблица 4
Значения корней Д i , i = 1 , 2 , 3 уравнения (12) для b = 0 , r = 10 3
k |
0.24 |
0.22 |
0.208 |
0.204 |
0.20 |
0.16 |
0.12 |
0.08 |
0.04 |
0.01 |
A i |
0.670 |
0.487 |
0.420 |
0.401 |
0.384 |
0.252 |
0.164 |
0.099 |
0.049 |
0.021 |
A 2 |
1.489 |
2.059 |
2.388 |
2.502 |
2.617 |
3.999 |
6.171 |
10.404 |
22.957 |
97.990 |
A 3 |
-0.001 |
-0.001 |
-0.001 |
-0.001 |
-0.001 |
-0.002 |
-0.002 |
-0.003 |
-0.005 |
-0.012 |
Finally, with an even greater increase in the parameter r , the roots become complex-valued
Table 5
Таблица 5
The values of the roots Д i , i = 1 , 2 , 3 of equation (12) for b = 0 , r = 1
Значения корней Д i , i = 1 , 2 , 3 уравнения (12) для b = 0 , r = 1
k |
0.24 |
0.209 |
0.206 |
0.203 |
0.18 |
0.12 |
0.06 |
0.01 |
A i |
1.265+1.129i |
1.588+0.726i |
1.625+0.656i |
1.662+0.574i |
1.173 |
0.695 |
0.503 |
0.406 |
A 2 |
-0.362 |
-0.392 |
-0.395 |
-0.398 |
2.804 |
6.128 |
14.727 |
98.221 |
A 3 |
1.265-1.129i |
1.588-0.726i |
1.625-0.656i |
1.662-0.574i |
-0.422 |
-0.489 |
-0.653 |
-0.627 |
This means that at such magnetic field, the model becomes non-interpretable.
Conclusions
In the present paper, the model of a fermion with three mass parameters is studied in presence of the external uniform magnetic field. After diagonalizing transformation, three separate equations are obtained effectively for particles with different anomalous magnetic moments. Their exact solutions and generalized energy spectra are found. After diagonalizing the mixing matrix, we reduce the problem for three separated Dirac–like equations for particles with different anomalous magnetic moment. It is shown that for a very strong magnetic field, the model becomes non-interpretable, because the effective anomalous moments turns out to be complex-valued.
Список литературы Fermion with three mass parameters in the uniform magnetic field
- Gelfand, I.M. Obshchiye relyativistski invariantnyye uravneniya i beskonechnomernyye predstavleniya gruppy Lorentsa [General relativistically invariant equations and infinite-dimensional representations of the Lorentz group] / I.M. Gelfand, A.M. Yaglom // Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki [Journal of Experimental and Theoretical Physics]. – 1948. – Vol. 18. № 8. P. 703–733.
- Gelfand, I.M. Representations of the rotation and Lorentz groups and their applications / I.M. Gelfand, R.A. Minlos, Z.Ya. Shapiro. – New York: Pergamon Press, 1963. – 366 p.
- Red’kov, V.M. Polya chastic v rimanovom prostranstve i gruppa Lorenca [Fields in Riemannian space and the Lorentz group] / V.M. Red’kov. – Minsk: Belorusskaya nauka, 2009. – 486 p.
- Pletyukhov, V.A. Relyativistskie volnovye uravneniya i vnutrennie stepeni svobody [Relativistic wave equations and intrinsic degrees of freedom] / V.A. Pletyukhov, V.M. Red’kov, V.I. Strazhev. – Minsk: Belorusskaya nauka, 2015. – 327 p.
- Kisel, V.V. Elementary particles with internal structure in external fields. Vol. I, II / V.V Kisel, E.M. Ovsiyuk, V. Balan, O.V. Veko, V.M. Red’kov. – New York: Nova Science Publishers Inc., 2018. – 418, 414 pp.
- Ovsiyuk, E.M. Kvantovaya mekhanika chastic so spinom v magnitnom pole [Quantum mechanics of the particles with spin in magnetic field] / E.M Ovsiyuk, O.V. Veko, Ya.A. Voynova, V.V. Kisel, V.M. Red’kov. – Minsk: Belorusskaya nauka, 2017. – 517 p.
- Ovsiyuk, E.M. Spin 1/2 particle with anomalous magnetic moment in a uniform magnetic field, exact solutions / E.M. Ovsiyuk, V.V. Kisel, Y.A. Voynova, O.V. Veko, V.M. Red’kov // Nonlinear Phenomena in Complex Systems. – 2016. – Vol. 19, № 2. – P. 153–165.
- Ovsiyuk, E.M. Kvantovaya mekhanika elektrona v magnitnom pole, uchet anomal’nogo magnitnogo momenta [Quantum mechanics of the electron in the magnetic field, taking into account of the anomalous magnetic moment] / E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, V.V. Kisel, V.M. Red’kov // Doklady NAN Belarusi, 2016. – Vol. 60, № 4. – P. 67–73.
- Kisel, V.V. Spin 1/2 particle with two mass states, interaction with external fields / V.V. Kisel, V.A. Pletyukhov, V.V. Gilewsky, E.M. Ovsiyuk, O.V. Veko, V.M. Red’kov // Nonlinear Phenomena in Complex Systems. – 2017. – Vol. 20. – P. 404–423.
- Kisel, V.V. Fermion s vnutrennim spektrom mass vo vneshnih polyah [Fermion with internal mass spectrum in external fields] / V.V. Kisel, E.M. Ovsiyuk, O.V. Veko, V.M. Red’kov // Bulletin of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences. – 2018. – № 33. – P. 81–88. (Proceedings of the Int. Sem. “Group Theoretical Methods for the Study of Physical Systems”, 2017, September 21-23, Syktyvkar).
- Kisel, V.V. Fermion s tremya massovymi parametrami: vzaimodejstvie s vneshnimi polyami [Fermion with three mass parameters: interaction with external fields] / V.V. Kisel, V.A. Pletjukhov, E.M. Ovsiyuk, Y.A. Voynova, O.V. Veko [et al.] // Doklady NAN Belarusi. – 2018. – Vol. 62, № 6. – P. 661–667.
- Pletjukhov, V.A. Fermion s tremya massovymi parametrami, obshchaya teoriya, vzaimodejstvie s vneshnimi polyami [Fermion with three mass parameters, general theory, interaction with external fields] / V.A. Pletjukhov, V.V. Kisel, E.M. Ovsiyuk, Ya.A. Voynova, O.V. Veko [et al.] // Uchenye zapiski Brestskogo gosudarstvennogo universiteta imeni A.S. Pushkina. Estestvennye nauki [Scientific notes of Brest State University named after A.S. Pushkin. Natural Sciences]. – 2018. – Vol. 14. – P. 16–50.
- Ovsiyuk, E.M. Spin 1/2 particle with two masses in external magnetic field / E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, V.M. Red’kov, V.V. Kisel [et al.] // J. Mech. Cont. and Math. Sci. Special Issue. – 2019. – Vol. 1. – P. 651–660.
- Ovsiyuk, E.M. On modeling neutrinos oscillations by geometry methods in the frames of the theory for a fermion with three mass parameters / E.M. Ovsiyuk, Ya.A. Voynova, V.V. Kisel, V.A. Pletyukhov, V.V. Gilewsky [et al.] // J. Phys. Conf. Ser. – 2019. – Vol. 1416. – Paper 012040.
- Kisel, V.V. Fermion with three mass parameters / V.V. Kisel, V.A. Pletyukhov, E.M. Ovsiyuk, Ya.A. Voynova, V.M. Red’kov // Chapter in: Future of Relativity, Gravitation, Cosmology. – New York: Nova Science Publishers Inc., 2023. – P. 262–289.