Физико-механические характеристики грунта, укрепленного негашеной известью для дорожного полотна

Автор: Вдовин Е.А., Буланов П.Е., Мавлиев Л.Ф.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 7 (105), 2022 года.

Бесплатный доступ

Объектом исследования является стабилизация глинистых грунтов дорожного полотна. Целью данной работы является изучение физико-механических характеристик стабилизированного глинистого грунта негашеной известью. Рассмотрено влияние негашеной молотой извести в количестве от 1% до 10% на изменение основных физических свойств и прочности при сжатии глинистого грунта.

Стабилизация грунта, негашеная известь, дорожное полотно, дорога, индекс пластичности, максимальная плотность, оптимальная влажность

Короткий адрес: https://sciup.org/143182685

IDR: 143182685   |   DOI: 10.4123/CUBS.105.3

Список литературы Физико-механические характеристики грунта, укрепленного негашеной известью для дорожного полотна

  • Vdovin, E., Bulanov, P., Mavliev, L. (2021) Modification of Cement-Sand-Gravel Mixtures with Waste from Road Construction Industries. Izvestiya KGASU, 3(57), 32-40, https://doi.org/10.52409/20731523_2021_3_32.
  • Vdovin, E., Bulanov, P., Stroganov, V., Mavliev, L. (2023) Physical and Mechanical Characteristics of Modified Soil Cement with Polycarboxylate Superplasticizers. Proceedings of STCCE. 2022. Lecture Notes in Civil Engineering, 291, 125-133, https://doi.org/10.1007/978-3-031-14623-7_10.
  • Baghini, M.S., Ismail, A., Karim, M.R., Shokri, F., Firoozi, A.A. (2014) Effect of Styrene-Butadiene Copolymer Latex on Properties and Durability of Road Base Stabilized with Portland Cement Additive. Construction and Building Materials, 68, 740-749, https://doi.org/10.1016/j.conbuildmat.2014.06.061.
  • Goodary, R., Lecomte-Nana, G.L., Petit, C. Smith, D.S. (2012) Investigation of the Strength Development in Cement-Stabilised Soils of Volcanic Origin. Construction and Building Materials,28(1),592-598, https://doi.org/ 10.1016/j.conbuildmat.2011.08.054.
  • Al-Amoudi, O.S.B., Khan, K., Al-Kahtani, N.S. (2010) Stabilization of a Saudi Calcareous Marl Soil. Construction and Building Materials,24(10), 1848-1854, https://doi.org/10.1016/j.conbuildmat.2010.04.019.
  • Basha, E.A., Hashini, R. Mahmud, H.B.,Muntohai, A.S. (2005) Stabilization of Residual Soil with Rice Husk Ash and Cement. Construction and Building Materials,19(6),448-453, https://doi.org/10.1016/j.conbuildmat.2004.08.001.
  • Horpibulsuk, S., Radian, R.,Chinkulkijniwat, A.,Raksachon, Y.,Suddeepong, A. (2010)Analysis of Strength Development in Cement-Stabilized Silty Clay from Microstructural Considerations. Construction and Building Materials,24(10), 2011-2021, https://doi.org/ 10.1016/j.conbuildmat.2010.03.011.
  • Huang, Y., Fan, W., Wu, J., Xiang, X., Wang, G. (2022) Experimental Study on Strength and Microstructure of Glacial Till Stabilized by Ionic Soil Stabilizer. Buildings, 12, 1446. https://doi.org/10.3390/buildings12091446.
  • Ojuri, O.O., Adavi, A.A., Oluwatuyi, O.E. (2017) Geotechnical and Environmental Evaluation of Lime-Cement Stabilized Soil-Mine Tailing Mixtures for Highway Construction. Transportation Geotechnics, 10,1-12. https://doi.org/10.1016/j.trgeo.2016.10.001.
  • Zhou, S.-Q., Zhou, D.-W., Zhang, Y.-F., Wang, W.-J., Li, D. (2019) Research on the Dynamic Mechanical Properties and Energy Dissipation of Expansive Soil Stabilized by Fly Ash and Lime. Advances in Materials Science and Engineering, 1, 1-13. https://doi.org/10.1155/2019/5809657.
  • Gu, J., Lyu, H., Yang, J., Zeng, C. (2022) Effects of Cement Content and Curing Period on Geotechnical Properties of Cement-Treated Calcareous Sands. Transportation Geotechnics,33(1),100732. https://doi.org/10.1016/j.trgeo.2022.100732.
  • Pu, S., Zhu, Z., Zhao, L., Song, W., Wan, Y., Huo, W., Wang, H., Yao, K., Hu, L. (2020) Microstructural Properties and Compressive Strength of Lime ог/and Cement Solidified Silt: A Multi-Scale Study. Bulletin of Engineering Geology and the Environment, 79(3), 5141-5159, https://doi.org/10.1007/s10064-020-01910-y.
  • Yang, S., Liu, W. (2019) The Effect of Changing Fly Ash Content on the Modulus of Compression of Stabilized Soil. Materials,12(18),2925, https://doi.org/10.3390/ma12182925.
  • Ma, C., Zhao, B., Long, G., Sang, X., Xie, Y. (2018) Quantitative Study on Strength Development of Earth-Based Construction Prepared by Organic Clay and High-Efficiency Soil Stabilizer. Construction and Building Materials, 274,520-528.https://doi.org/10.1016/j.conbuildmat.2018.04.119.
  • Abbey, S.J., Eyo, U.E., Okeke, C.A.U., Ngambi S. (2021) Experimental Study on the Use of RoadCemBlended with By-Product Cementitious Materials for Stabilisation of Clay Soils. Construction and Building Materials, 280, 122476.https://doi.org/10.1016/j.conbuildmat.2021.122476.
  • Arun kumar, М., Kulanthaivel, P., Selvapraveen, S., Vinodhkumar, S., Naveenraj, V. (2020) Strength Behaviour of Clay Soil Stabilized With Lime. IOP Conference Series Materials Science and Engineering, 961, 012003.https://doi.org/10.1088/1757-899X/961/1/012003.
  • Barwar, A., Chandrappa, A.K., Sahoo, U.C. (2022) Laboratory Investigations on Stabilization of Weak Clay Soil Using Rice Husk Ash and Cement. Innovative Infrastructure Solutions,7(5), 327. https://doi.org/10.1007/S41062-022-00924-7.
  • Firoozi, A.A., Guney, O.C., Firoozi,A.A. (2017) Fundamentals of Soil Stabilization. International Journal of Geo-Engineering,8(1), 26, https://doi.org/10.1186/s40703-017-0064-9.
  • Roshan, K., Choobbasti, A., Soleimani, K., Fakhrabadi, A. (2021) The Effect of Adding Polypropylene Fibers on the Freeze-Thaw Cycle Durability of Lignosulfonate Stabilised Clayey. Cold Regions Science and Technology, 193(3), 103418.https://doi.org/10.1016/j.coldregions.2021.103418.
  • Ayodele, F.O., Fajimi, M.S., Alo, B.A. (2022) Stabilization of Tropical Soil Using Calcium Carbide Residue and Rice Husk Ash. Materials Today: Proceedings, 60(1), 216-222.https://doi.org/10.1016/j.matpr.2021.12.465.
  • lbtehaj, T.J., Mohd, R.T., Zaid, H.M., Tanveer, A.K. (2014) Soil Stabilization Using Lime: Advantages, Disadvantages and Proposing a Potential Alternative. Journal of Applied. Research Sciences. Engineering and Technology, 8(4), 510-520, https://doi.org/10.19026/rjaset.8.1000.
  • Arun, K.M., Kulanthaivel, P., Selvapraveen, S., Vinodhkumar, V. (2020) Strength Behaviour of Clay Soil Stabilized With Lime. IOP Conference Series: Materials Science and Engineering, 961(1), 012003, https://doi.org/10.1088/1757-899X/961/1/012003.
  • Yilmaz, F., Demir E. (2019) Freezing-Thawing and Wetting-Drying Behavior of Clayey Soil Stabilized with Lime and Silica Fume.Erzincan Üniversitesi Fen BilimleriEnstitüsüDergisi, 12(3), 1724-1732, https://doi.org/10.18185/erzifbed.654104.
  • Kushwaha, J.R. Kirar, D.B. (2021) A Study of Black Cotton Soil Stabilization with Lime and Waste Plastic Bottle Stirrup. International Journal for Research in Applied Science and Engineering Technology,9(3), 1218-1223, https://doi.org/ 10.37896/YMER21.08/34.
  • Aldaood, A., Bouasker, M., Al-Mukhtar, M. (2020) Mechanical Behavior of Gypseous Soil Treated with Lime. Geotechnical and Geological Engineering, 39(2), 719-733.https://doi.org/10.1007/s10706-020-01517-w.
  • ГОСТ 25100-2020. Soils. Classification. https://docs.cntd.ru/document/1200174302?ysclid=lgf5je3qlx797540969.
  • GOST 12536-2014. Soils. Methods of laboratory granulometric (grain-size) and microaggregate distribution. https://docs.cntd.ru/document/1200116022?ysclid=lgf5kmj2kc376874756.
  • GOST 5180-2015. Soils. Laboratory methods for determination of physical characteristics. https://docs.cntd.ru/document/1200126371?ysclid=lgf5ld77i5624867574
  • GOST 22733-2016. Soils. Laboratory method for determining of maximum density. https://docs.cntd.ru/document/1200137273?ysclid=lgf5maaumx977943569.
  • GOST 23558-94. Crushed stone-gravel-sandy mixtures, and soils treated by inorganic binders for road and airfield construction. Specifications. https://docs.cntd.ru/document/901705984?ysclid=lgf5n34i3s763771527.
  • GOST 9179-2018. Lime for building purposes. Specifications. https://docs.cntd.ru/document/1200160711?ysclid=lgf5nuf2eo744069789.
  • Bulanov, P.E., Vdovin, E.A., Mavliev, L.F., Stroganov, V.F. (2017) Optimization of Composition and Investigation of the Effect of Complex Hydrophobic-Plasticizing Additive on Physico-Technical Properties Reinforced with Portland Cement Clay Soils. Izvestiya KGASU, 4(42), 376-383, https://www.elibrary.ru/item.asp?id=30604738.
  • Soundarya, M.K., Bhuvaneshwari, S. (2019) Soil Stabilization on Problematic Soil with Traditional Stabilizer. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 11361-11364, https://doi.org/10.35940/ijrteD5413.118419.
  • Blomquist, J., Englund, J.-E., Berglund, K. (2022) Soil Characteristics and Tillage Can Predict the Effect of ‘Structure Lime’ on Soil Aggregate Stability. Soil Research, 60(4), 373-384, https://doi.org/10.1071/SR21022.
  • Pushpakumara, B.H.J., Mendis, W.S.W. (2022) Suitability of Rice Husk Ash (RHA) with lime as a soil stabilizer in geotechnical applications. International Journal of Geo-Engineering, 13(4), 1-12, https://doi.org/10.1186/s40703-021-00169-w.
  • Kannan, D.V., Banu, S., Jahana, J.A. (2019) Effects of Rice Husk Ash and Lime on Clay Soil Stabilization. Modern Approaches on Material Science, 1(5), 134-139, https://doi.org/10.32474/mams.2019.01.000121.
Еще
Статья научная