Forecasting tariffs for the day-ahead market based on the additive model
Автор: Lyaskovskaya E.A., Zarjitskaya-thierling P.K., Dmitrina O.A.
Рубрика: Краткие сообщения
Статья в выпуске: 3 т.13, 2020 года.
Бесплатный доступ
The problem of constructing an additive model for forecasting of the market tariff for the day ahead is solved. The trend component is constructed on the basis of the autoregressive model of already known values of the day-ahead market tariff and the external factor of electricity consumption according to the United Energy System (UES) of the Urals Wholesale Electricity and Power Market (OREM) of Russia for 2009-2018. Based on the construction of the autocorrelation function, three seasonal components are identified in the time series of hourly values of the market tariff for the day ahead: annual (8760 values), weekly (168 values), daily (24 values). A harmonic model of each component is constructed. The final additive model is constructed taking into account the specifics of the electricity market and the process of setting the market tariff for the day ahead and a balancing market. The practical significance of the developed additive model is adequate accuracy with the well-known models for forecasting of the market tariff for the day ahead of the UES of the Urals. The proposed model allows the subjects of the electric power industry to avoid penalties from the balancing market by ensuring high accuracy of forecasting.
Modelling, forecasting, autoregression, additive model, electric power industry, energy market
Короткий адрес: https://sciup.org/147232993
IDR: 147232993 | DOI: 10.14529/mmp200307
Список литературы Forecasting tariffs for the day-ahead market based on the additive model
- Garcia, R.C. Forecasting Model to Predict Day-Ahead Electricity Prices / R.C. Garcia // IEEE Transactions on Power Systems. - 2005. - V. 20, № 2. - P. 867-874.
- Мохов, В.Г. Построение трендовой составляющей аддитивной модели долгосрочного прогнозирования Оптового рынка электрической энергии и мощности России на примере Объединенной энергосистемы Урала / В.Г. Мохов, Т.С. Демьяненко // Вестник ЮУрГУ. Серия: Экономика и менеджмент. - 2018. - Т. 12, № 2. - С. 80-87.
- Taylor, J.W. Short-Term Load Forecasting Methods: an Evaluation Based on European Data / J.W. Taylor, P.E. McSharry // IEEE Transactions on Power Systems. - 2008. - V. 22. - P. 2213-2219.
- Taylor, J.W. Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing / J.W. Taylor // Journal of Operational Research Society. - 2003. - V. 54. - P. 799-805.
- Perez, M. Time Series Analysis with Matlab. ARIMA and ARIMAX Models / M. Perez. - Scotts Valley: CreateSpace Independent Publishing Platform, 2016.