Формирование каркаса дорожного покрытия из гранулированной смеси методом уплотнения
Автор: Игнатьев А.А.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 1 (110), 2024 года.
Бесплатный доступ
Уплотнение горячих асфальтобетонных смесей имеет ряд недостатков. В свою очередь, зернистые переделы лишены этих недостатков, но мало изучены. Объектом исследования являются зернистые переделы. Целью данной работы является изучение особенностей уплотнения зернистых переделов в диапазоне температур от 20 °С до 120 °С. Приведены результаты теоретических и экспериментальных исследований, отражающие особенности формирования каркаса материала, полученного из зернистых переделов с использованием известного технологического приема - уплотнения.
Асфальтобетон, дорожное покрытие, уплотнение, гранулированные смеси, конверсия, температура уплотнения
Короткий адрес: https://sciup.org/143182726
IDR: 143182726 | DOI: 10.4123/CUBS.110.2
Список литературы Формирование каркаса дорожного покрытия из гранулированной смеси методом уплотнения
- Ignatiev, A., Gerasimov, D., Golikov, I., & Gotovtsev, V. (2018). Granulated asphalt mix based on industrial and domestic waste. In MATEC Web of Conferences 251. EDP Sciences. https://doi.org/10.1051/matecconf/201825101028
- Ignatiev, A., Gerasimov, D., Golikov, I., & Gotovtsev, V. (2018, June). Dispersed-filled composites with a structured nanoscale. In IOP Conference Series: Materials Science and Engineering 365, 3, 032064. IOP Publishing. https://doi:10.1088/1757-899X/365/3/032064
- Gotovtsev, V. M., & Ignat'yev, A. A. (2019, October). The effect of structuring composite building materials. In IOP Conference Series: Materials Science and Engineering 666, 1, 012079. IOP Publishing. https://doi:10.1088/1757-899X/666/1/012079
- Ignat'yev, A. A., Gotovtsev, V. M., & Razgovorov, P. B. (2021, February). Effects of structural formation in the implementation of the technology for obtaining asphalt concrete mixtures with phosphogypsum and other additives. In IOP Conference Series: Materials Science and Engineering 1100, 1, 012016). IOP Publishing. https:// doi:10.1088/1757-899X/1100/1/012016
- Razgovorov, P. B., Ignatiev, А. A., Gotovtsev, V. M., & Vlasova, E. A. (2022, February). Using Granulate Composites with Calcined Phosphogypsum and Pet Additive in Asphalting. In Materials Science Forum 1049, 257-265. Trans Tech Publications Ltd. https://DOI: 10.4028/www.scientific.net/MSF.1049.257
- Bernal, J. D., & Finney, J. L. (1967). Random close-packed hard-sphere model. II. Geometry of random packing of hard spheres. Discussions of the Faraday Society, 43, 62-69. https://doi.org/10.1039/DF9674300062
- Bernal, J. D. (1964). The Bakerian lecture, 1962. The structure of liquids. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 280, 299-322. https://doi.org/10.1098/rspa.1964.0147
- Boromand, Arman & Signoriello, Alexandra & Ye, Fangfu & O'Hern, Corey & Shattuck, Mark. (2018). Jamming of Deformable Polygons. Physical Review Letters. 121. 248003. https://doi.org/10.1103/PhysRevLett.121.248003.
- Barés, Jonathan & Cárdenas-Barrantes, Manuel & Cantor, David & Renouf, Mathieu & Azéma, Emilien. (2022). Softer than soft: Diving into squishy granular matter. Papers in Physics. 14, 140009. https://doi.org/10.4279/pip.140009.
- Zhao, Y., Barés, J., Zheng, H., Socolar, J. E. S., & Behringer, R. P. (2019). Shear-Jammed, Fragile, and Steady States in Homogeneously Strained Granular Materials. Physical Review Letters, 123. https://doi.org/10.1103/physrevlett.123.158001
- Höhler, R., & Cohen-Addad, S. (2005). Rheology of liquid foam. Journal of Physics: Condensed Matter, 17, 1041–1069. https://doi.org/10.1088/0953-8984/17/41/r01.
- Weaire, D., Langlois, V., Saadatfar, M., & Hutzler, S. (2007). Foam as granular matter. In Granular and Complex Materials 1-26. https://doi.org/10.1142/9789812771995_0001
- Höhler, R., & Weaire, D. (2019). Can liquid foams and emulsions be modeled as packings of soft elastic particles?. Advances in colloid and interface science, 263, 19-37. https://doi.org/10.1016/j.cis.2018.11.002
- Vu, T. L., Barés, J., Mora, S., & Nezamabadi, S. (2019). Deformation field in diametrically loaded soft cylinders. Experimental Mechanics, 59, 453-467. https://doi.org/10.1007/s11340-019-00477-4
- O'Sullivan, M. J., Phung, T. K. N., & Park, J. A. (2020). Bronchoconstriction: A potential missing link in airway remodelling. Open Biology, 10, 200254. https://doi.org/10.1098/rsob.200254/v2/decision1
- Vu, T. L., & Barés, J. (2019). Soft-grain compression: Beyond the jamming point. Physical Review E, 100, 042907. https://doi.org/10.1103/physreve.100.042907
- Hernández-Enríquez, D., Lumay, G., Pacheco-Vázquez, F., Radjai, F., Delenne, J. Y., Nezamabadi, S., & Luding, S. (2017). Discharge of repulsive grains from a silo: experiments and simulations. In EPJ Web of Conferences, 140. EDP Sciences. https://doi.org/10.1051/epjconf/201714003089
- Cox, M., Wang, D., Barés, J., & Behringer, R. P. (2016). Self-organized magnetic particles to tune the mechanical behavior of a granular system. Europhysics Letters, 115, 64003. https://doi.org/10.1209/0295-5075/115/64003
- Nezamabadi, S., Nguyen, T. H., Delenne, J. Y., & Radjai, F. (2017). Modeling soft granular materials. Granular Matter, 19, 1-12. https://doi.org/10.1007/s10035-016-0689-y
- Wang, D., Treado, J. D., Boromand, A., Norwick, B., Murrell, M. P., Shattuck, M. D., & O'Hern, C. S. (2021). The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions. Soft Matter, 17, 9901-9915. http://dx.doi.org/10.1039/d1sm01228b
- Wang, D., Li, M., & An, X. (2022). Numerical study on the warm compaction and solid-state sintering of TiC/316L composite powders from particulate scale. Powder Technology, 402, 117361. https://doi.org/10.1016/j.powtec.2022.117361
- Procopio, A. T., & Zavaliangos, A. (2005). Simulation of multi-axial compaction of granular media from loose to high relative densities. Journal of the Mechanics and Physics of Solids, 53, 1523-1551. https://doi.org/10.1016/j.jmps.2005.02.007
- Huang, F., An, X., Zhang, Y., & Yu, A. B. (2017). Multi-particle FEM simulation of 2D compaction on binary Al/SiC composite powders. Powder Technology, 314, 39-48. https://doi.org/10.1016/j.powtec.2017.03.017
- Harthong, B., Jérier, J. F., Dorémus, P., Imbault, D., & Donzé, F. V. (2009). Modeling of high-density compaction of granular materials by the discrete element method. International Journal of Solids and Structures, 46, 3357-3364. https://doi.org/10.1016/j.ijsolstr.2009.05.008
- Vu, T. L., Barés, J., Mora, S., & Nezamabadi, S. (2019). Numerical simulations of the compaction of assemblies of rubberlike particles: A quantitative comparison with experiments. Physical Review E, 99, 062903. https://doi.org/10.1103/physreve.99.062903
- Cantor, D., Cárdenas-Barrantes, M., Preechawuttipong, I., Renouf, M., & Azéma, E. (2020). Compaction model for highly deformable particle assemblies. Physical Review Letters, 124, 208003. https://doi.org/10.1103/physrevlett.124.208003
- Cárdenas-Barrantes, M., Cantor, D., Barés, J., Renouf, M., & Azéma, E. (2022). Three-dimensional compaction of soft granular packings. Soft Matter, 18, 312-321. https://doi.org/10.1039/d1sm01241j
- Mollon, G. (2018). Mixtures of hard and soft grains: micromechanical behavior at large strains. Granular Matter, 20, 39. https://doi.org/10.1007/s10035-018-0812-3
- Zhao, Y., Barés, J., Zheng, H., Socolar, J. E., & Behringer, R. P. (2019). Shear-jammed, fragile, and steady states in homogeneously strained granular materials. Physical review letters, 123, 158001. https://doi.org/10.48550/arxiv.1904.10051
- Bi, D., Zhang, J., Chakraborty, B., & Behringer, R. P. (2011). Jamming by shear. Nature, 480, 355-358. https://doi.org/10.1038/nature10667
- O’hern, C. S., Silbert, L. E., Liu, A. J., & Nagel, S. R. (2003). Jamming at zero temperature and zero applied stress: The epitome of disorder. Physical Review E, 68(1), 011306. https://doi.org/10.1103/physrevlett.103.235701