Functional calculus and Minkowski duality on vector lattices

Автор: Kusraev Anatoly G.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.11, 2009 года.

Бесплатный доступ

The paper extends homogeneous functional calculus on vector lattices. It is shown that the function of elements of a relatively uniformly complete vector lattice can naturally be defined if the positively homogeneous function is defined on some conic set and is continuous on some closed convex subcone. An interplay between Minkowski duality and homogeneous functional calculus leads to the envelope representation of abstract convex elements generated by the linear hull of a finite collection in a uniformly complete vector lattice.

Vector lattices, functional calculus, minkowski duality, sublinear and superlinear operators, envelope representation

Короткий адрес: https://sciup.org/14318270

IDR: 14318270

Список литературы Functional calculus and Minkowski duality on vector lattices

  • Aliprantis C. D.,Burkinshaw O. Positive Operators.-London etc.: Acad. Press inc., 1985.-xvi+367 p.
  • Bukhvalov A. V. Nonlinear majorization of linear operators//Dokl. Acad Nauk SSSR.-1988.-Vol. 298, № 1.-P. 14-17.
  • Buskes G., de Pagter B., van Rooij A. Functional calculus on Riesz spaces//Indag. Math. (N.S.).-1991.-Vol. 4, № 2.-P. 423-436.
  • Buskes G., van Rooij A. Squares of Riesz spaces//Rocky Mountain J. Math.-2001.-Vol. 31, № 1.-P. 45-56.
  • Fremlin D. H. Tensor product of Archimedean vector lattices//Amer. J. Math.-1972.-Vol. 94, № 3.-P. 777-798.
  • Gutman A. E. Banach bundles in the theory of lattice-normed spaces. I. Continuous Banach bundles//Siberian Adv. Math.-1993.-Vol. 3, № 3.-P. 1-55.
  • Gutman A. E. Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles//Siberian Adv. Math.-1993.-Vol. 3, № 4.-P. 8-40.
  • Haase M. Convexity inequalities for positive operators//Positivity.-2007.-Vol. 11, № 1.-P. 57-68.
  • Krivine J. L. Theoremes de factorisation dans les espaces reticules//Seminar Maurey-Schwartz.-1973/74, Ecole Politech., Expose 22-23.
  • Kusraev A. G. Dominated Operators.-Dordrecht: Kluwer, 2000.-405 p.
  • Kusraev A. G., Kutateladze S. S. Subdifferentials: Theory and Applications.-Dordrecht: Kluwer, 1995.
  • Kusraev A. G., Tabuev S. N. On multiplication representation of disjointness preserving bilinear operators//Siberian Math. J.-2008.-Vol. 49, № 2.-P. 357-366.
  • Kutateladze S. S., Rubinov A. M. Minkowski Duality and Its Applications.-Novosibirsk: Nauka, 1976.
  • Lindenstrauss J., Tzafriri L. Classical Banach Spaces. Vol. 2. Function Spaces.-Berlin etc.: Springer-Verlag, 1979.-243 p.
  • Lozanovskii G. Ya. Certain Banach lattice//Sibirsk. Mat. Zh.-1969.-Vol. 10, № 3.-P. 584-599.
  • Lozanovskii G. Ya. Certain Banach lattice. II//Sibirsk. Mat. Zh.-1971.-Vol. 12, № 3.-P. 552-567.
  • Lozanovskii G. Ya. Certain Banach lattice. IV//Sibirsk. Mat. Zh.-1973.-Vol. 14, № 1.-P. 140-155.
  • Lozanovskii G. Ya. The functions of elements of vector lattices//Izv. Vyssh. Uchebn. Zaved. Mat.-1973.-Vol. 4.-P. 45-54.
  • Rockafellar R. T. Convex Analysis.-Princeton-New Jersey: Princeton Univ. Press, 1970.
  • Rubinov A. M. Monotonic analysis//Studies on Functional Analysis and Its Applications (Eds. A. G. Kusraev and V. M. Tikhomirov).-Moscow: Nauka, 2006.-P. 167-214.
  • Szulga J. $(p,r)$-convex functions on vector lattices//Proc. Edinburg Math. Soc.-1994.-Vol. 37, № 2.-P. 207-226.
Еще
Статья научная