Fuzzy Clustering Data Given in the Ordinal Scale

Автор: Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii K. Tyshchenko, Viktoriia O. Samitova

Журнал: International Journal of Intelligent Systems and Applications(IJISA) @ijisa

Статья в выпуске: 1 vol.9, 2017 года.

Бесплатный доступ

A fuzzy clustering algorithm for multidimensional data is proposed in this article. The data is described by vectors whose components are linguistic variables defined in an ordinal scale. The obtained results confirm the efficiency of the proposed approach.

Computational Intelligence, Machine Learning, Categorical Data, Ordinal Scale, Fuzzy Clustering

Короткий адрес: https://sciup.org/15010894

IDR: 15010894

Список литературы Fuzzy Clustering Data Given in the Ordinal Scale

  • R. Kruse, C. Borgelt, F. Klawonn, C. Moewes, M. Steinbrecher, and P. Held, Computational Intelligence. A Methodological Introduction. Berlin: Springer, 2013.
  • J. Kacprzyk and W. Pedrycz, Springer Handbook of Computational Intelligence. Berlin- Heidelberg: Springer-Verlag, 2015.
  • K.-L. Du and M.N.S. Swamy, Neural Networks and Statistical Learning. London: Springer- Verlag, 2014.
  • T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Data Mining, Inference, and Prediction. N.Y.: Springer Science & Business Media, LLC, 2009.
  • C.C. Aggarwal, Data Mining. Cham: Springer, Int. Publ. Switzerland, 2015.
  • Zh. Hu, Ye.V. Bodyanskiy, and O.K. Tyshchenko, “A Cascade Deep Neuro-Fuzzy System for High-Dimensional Online Possibilistic Fuzzy Clustering”, Proc. of the XI-th International Scientific and Technical Conference “Computer Science and Information Technologies” (CSIT 2016), 2016, Lviv, Ukraine, pp.119-122.
  • Zh. Hu, Ye.V. Bodyanskiy, and O.K. Tyshchenko, “A Deep Cascade Neuro-Fuzzy System for High-Dimensional Online Fuzzy Clustering”, Proc. of the 2016 IEEE First Int. Conf. on Data Stream Mining & Processing (DSMP), 2016, Lviv, Ukraine, pp.318-322.
  • Ye. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “An evolving neuro-fuzzy system for online fuzzy clustering”, Proc. Xth Int. Scientific and Technical Conf. “Computer Sciences and Information Technologies (CSIT’2015)”, 2015, pp.158-161.
  • Ye. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “Adaptive learning of an evolving cascade neo-fuzzy system in data stream mining tasks”, in Evolving Systems, 2016, vol. 7(2), pp.107-116.
  • Ye. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “An Extended Neo-Fuzzy Neuron and its Adaptive Learning Algorithm”, in I.J. Intelligent Systems and Applications (IJISA), 2015, vol.7(2), pp.21-26.
  • Ye. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “A hybrid cascade neural network with an optimized pool in each cascade”, in Soft Computing. A Fusion of Foundations, Methodologies and Applications (Soft Comput), 2015, vol. 19(12), pp.3445-3454.
  • Zh. Hu, Ye.V. Bodyanskiy, O.K. Tyshchenko, and O.O. Boiko, “An Evolving Cascade System Based on a Set of Neo-Fuzzy Nodes”, in International Journal of Intelligent Systems and Applications (IJISA), vol. 8(9), 2016, pp.1-7.
  • Ye.V. Bodyanskiy, V.A. Opanasenko, and А.N. Slipchenko, “Fuzzy clustering for ordinal data”, in Systemy Obrobky Informacii, 2007, Iss. 4(62), pp.5-9. (in Russian)
  • Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. N.Y.: Plenum Press, 1981.
  • Brouwer R K. Fuzzy set covering of a set of ordinal attributes without parameter sharing. Fuzzy Sets and Systems, 2006, 157(13): 1775 – 1786.
  • R.K. Brouwer, “Clustering feature vectors with mixed numerical and categorical attributes”, in International Journal of Computational Intelligence Systems, 2008, vol. 1(4), pp.285-298.
  • R.K. Brouwer, “Fuzzy clustering of feature vectors with some ordinal valued attributes using gradient descent for learning”, in International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008, vol. 16(2), pp.195-218.
  • M. Lee and R. K. Brouwer, “Fuzzy Clustering and Mapping of Ordinal Values to Numerical”, IEEE Symposium on Foundations of Computational Intelligence (FOCI 2007), 2007, pp.538-543.
  • L. Mahnhoon, “Mapping of Ordinal Feature Values to Numerical Values through Fuzzy Clustering”, in IEEE Trans. on Fuzzy Systems, 2008, pp.732-737.
  • Mahnhoon L, Brouwer R K. Likelihood based fuzzy clustering for data sets of mixed features. IEEE Symp. on Foundations of Comput. Intell. FOCI 2007: 544-549.
  • Brouwer R K, Pedrycz W. A feedforward neural network for mapping vectors to fuzzy sets of vectors. Proc. Int. Conf. on Artificial Neural Networks and Neural Information Processing ICANN/ICOMIP 2003, Istanbul, Turkey, 2003: 45-48.
  • J.C. Bezdek, J. Keller, R. Krisnapuram, and N. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. N.Y.: Springer Science and Business Media, Inc., 2005.
Еще
Статья научная