Harmonic functions and the potential’s theory
Автор: Kibirev V.V.
Журнал: Вестник Бурятского государственного университета. Философия @vestnik-bsu
Рубрика: Математика
Статья в выпуске: 6, 2007 года.
Бесплатный доступ
The article discusses the relationship of harmonic functions with the potential of mass distribution in a certain region of three-dimensional space. Two theorems are proved: if the mass density is bounded and integrable in a region, then the potential and its first derivatives are uniformly continuous, and if the potential density satisfies the Hölder condition, then this potential satisfies the Poisson equation.
Короткий адрес: https://sciup.org/148183765
IDR: 148183765
Статья научная