Generalization of Eberlein's and sine's ergodic theorems to lr-nets
Автор: Emelyanov Eduard, Nazife Erkusan
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 3 т.9, 2007 года.
Бесплатный доступ
The notion of LR-nets provides an appropriate setting for study of various ergodic theorems in Banach spaces. In the present paper, we prove Theorems 2.1, 3.1 which extend Eberlein's and Sine's ergodic theorems to LR-nets. Together with Theorem 1.1, these two theorems form the necessary background for further investigation of strongly convergent LR-nets. Theorem 2.1 is due to F. Rabiger, and was announced without a proof in [1].
Banach space, operator net, lr-net, strong convergence
Короткий адрес: https://sciup.org/14318216
IDR: 14318216
Список литературы Generalization of Eberlein's and sine's ergodic theorems to lr-nets
- Rabiger F. Stability and ergodicity of dominated semigroups: II. The strong case//Math. Ann.-1993.-V. 297.-P. 103-116.
- Lotz H. P. Tauberian theorems for operators on Banach spaces//Semesterbericht Functionalanalysis, Tubingen, WS-1983/84.-P.~1-15.
- Krengel U. Ergodic Theorems.-Berlin-New York: De Gruyter, 1985.