Generalization of Magic Square (Numerical Logic) 3×3 and its Multiples (3×3) × (3×3)

Автор: B L Kaul, Ramveer Singh

Журнал: International Journal of Intelligent Systems and Applications(IJISA) @ijisa

Статья в выпуске: 1 vol.5, 2012 года.

Бесплатный доступ

A magic square of 3×3 and its multiples i.e. (9×9) squares and so on, of order N are composed of (n×n) matrix having filled with numbers in such a way that the totals sum along the rows ,columns and main diagonals adds up the same. By using a special geometrical figure developed.

Magic Square, Square Matrix, Integer, Required Sum

Короткий адрес: https://sciup.org/15010357

IDR: 15010357

Список литературы Generalization of Magic Square (Numerical Logic) 3×3 and its Multiples (3×3) × (3×3)

  • Harold M. Stark. An introduction to number theory. MIT Press, Cambridge, Mass., 1978.
  • Joseph H. Silverman.The arithmetic of elliptic curves. Springer-Verlag, New York- Berlin, 1986.
  • Ezra Brown.Magic squares, finite planes, and points of inflection on elliptic curves. College Math. J., 32(4):260–267, 2001.
  • Agnew, Elizabeth H., “Two problems on magic squares,”Mathematics Magazine, 44 (1971),12–15.
  • Hanson, Klaus D.,“The magic square in Albrecht D¨urer’s“Melencolia I”:Metaphysical Symbol or mathematical pastime,” Renaissance and Modern Studies, 23 (1979), 5–24.
  • Ojha, B. & Kaul B.L., (2011). Generalization of 4x4 magic square. International Journal of applied engineering Research, Ddindigul, 1(4), 706-714.
  • Ojha, B. & Kaul B.L., (2011). Generalization of 5x5 magic square. Journal of Education and Vocational applied Research, 2(1), 18-23
  • Ojha, B. & Kaul B.L., (2011). Generalization of 6x6 magic square. Journal of Education and Vocational applied Research, 2(1), 18-23.
  • Ramveer singh & D. B. Ojha, (2011), Magic Square ORDES, World Applied Programming, Vol (1), No (4), October 2011. 252-255.
Статья научная