Genetic aberrations in multipe myeloma

Автор: Blau O., Bullinger L., Blau I.W.

Журнал: Вестник гематологии @bulletin-of-hematology

Рубрика: Передовые статьи

Статья в выпуске: 2 т.17, 2021 года.

Бесплатный доступ

Multiple myeloma (MM) is a plasma cell malignancy characterized by complex cytogenetic and molecular genetic aberrations. Genomic analysis shows a variety of gene mutations, aneuploidies, segmental copynumber changes, translocations that are extremely heterogeneous, and more numerous than other hematological malignancies. It is known that the development of MM is preceded by pre-malignant stages, and therefore it represents a well-defined model of disease progression, suitable for studies of clonal evolution and heterogeneity. Here we review at the main genetic abnormalities in patients with MM, involvement in pathogenesis, and prognostic value

Еще

Короткий адрес: https://sciup.org/170175820

IDR: 170175820

Список литературы Genetic aberrations in multipe myeloma

  • Joshua, D.E., et al., Biology and therapy of multiple myeloma. Med J Aust, 2019. 210(8): p. 375-380.
  • Kumar, S.K., et al., Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group stu-dy. Leukemia, 2012. 26(1): p. 149-57.
  • Rajkumar, S.V., Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. American Journal of Hematology, 2020. 95(5): p. 548-567.
  • Gutiérrez, N.C., R. García-Sanz, and J.F. San Miguel, Molecular biology of myeloma. Clin Transl Oncol, 2007. 9(10): p. 618-24.
  • Ryland, G.L., et al., Novel genomic findings in multiple myeloma identified through routine diagnostic sequencing. J Clin Pathol, 2018. 71(10): p. 895-899.
  • Palumbo, A., et al., Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J Clin Oncol, 2015. 33(26): p. 2863-9.
  • Cardona-Benavides, I.J., C. de Ramón, and N.C. Gutiérrez, Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells, 2021. 10(2).
  • Walker, B.A., et al., Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia, 2014. 28(2): p. 384-390.
  • Landgren, O., et al., Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood, 2009. 113(22): p. 5412-7.
  • Dutta, A.K., et al., Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia, 2019. 33(2): p. 457-468.
  • Kyle, R.A., et al., Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med, 2007. 356(25): p. 2582-90.
  • Chapman, M.A., et al., Initial genome sequencing and analysis of multiple myeloma. Nature, 2011. 471(7339): p. 467-72.
  • Dutta, A.K., et al., Cutting edge genomics reveal new insights into tumour development, disease progression and therapeutic impacts in multiple myeloma. Br J Haematol, 2017. 178(2): p. 196-208.
  • Manier, S., et al., Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol, 2017. 14(2): p. 100-113.
  • Szalat, R. and N.C. Munshi, Genomic heterogeneity in multiple myeloma. Curr Opin Genet Dev, 2015. 30: p. 56-65.
  • Brioli, A., et al., The impact of intra-clonal heterogeneity on the treatment of multiple myeloma. Br J Haematol, 2014. 165(4): p. 441-54.
  • Morgan, G.J., B.A. Walker, and F.E. Davies, The genetic architecture of multiple myeloma. Nat Rev Cancer, 2012. 12(5): p. 335-48.
  • Greaves, M. and C.C. Maley, Clonal evolution in cancer. Nature, 2012. 481(7381): p. 306-13.
  • González, D., et al., Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood, 2007. 110(9): p. 3112-21.
  • Zhan, F., et al., Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood, 2002. 99(5): p. 1745-57.
  • Baldin, V., et al., Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev, 1993. 7(5): p. 812-21.
  • Lakshman, A., et al., Natural history of t(11;14) multiple myeloma. Leukemia, 2018. 32(1): p. 131-138.
  • Gao, W., et al., What Multiple Myeloma With t(11;14) Should Be Classified Into in Novel Agent Era: Standard or Intermediate Risk? Front Oncol, 2020. 10: p. 538126.
  • Leiba, M., et al., Translocation t(11;14) in newly diagnosed patients with multiple myeloma: Is it always favorable? Genes Chromosomes Cancer, 2016. 55(9): p. 710-8.
  • Kumar, S., et al., Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood, 2017. 130(22): p. 2401-2409.
  • Pawlyn, C. and G.J. Morgan, Evolutionary biology of high-risk multiple myeloma. Nat Rev Cancer, 2017. 17(9): p. 543-556.
  • Kalff, A. and A. Spencer, The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: prognostic implications and current clinical strategies. Blood Cancer Journal, 2012. 2(9): p. e89-e89.
  • Brito, J.L., et al., MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells. Haematologica, 2009. 94(1): p. 78-86.
  • Xie, Z. and W.J. Chng, MMSET: role and therapeutic opportunities in multiple myeloma. Biomed Res Int, 2014. 2014: p. 636514.
  • Martinez-Garcia, E., et al., The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood, 2011. 117(1): p. 211-20.
  • Min, D.J., et al., MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC. Leukemia, 2013. 27(3): p. 686-94.
  • Shaughnessy, J., et al., Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood, 2001. 98(1): p. 217-223.
  • Castaneda, O. and R. Baz, Multiple Myeloma Genomics - A Concise Review. Acta Med Acad, 2019. 48(1): p. 57-67.
  • Barwick, B.G., et al., Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front Immunol, 2019. 10: p. 1121.
  • Hurt, E.M., et al., Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell, 2004. 5(2): p. 191-9.
  • Bergsagel, P.L. and W.M. Kuehl, Chromosome translocations in multiple myeloma. Oncogene, 2001. 20(40): p. 5611-22.
  • Annunziata, C.M., et al., A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood, 2011. 117(8): p. 2396-404.
  • Avet-Loiseau, H., et al., Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood, 2001. 98(10): p. 3082-6.
  • Smadbeck, J., et al., Mate pair sequencing outperforms fluorescence in situ hybridization in the genomic characterization of multiple myeloma. Blood Cancer J, 2019. 9(12): p. 103.
  • van Riggelen, J., A. Yetil, and D.W. Felsher, MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer, 2010. 10(4): p. 301-9.
  • Prochownik, E.V., c-Myc: linking transformation and genomic instability. Curr Mol Med, 2008. 8(6): p. 446-58.
  • Hoffman, B. and D.A. Liebermann, Apoptotic signaling by c-MYC. Oncogene, 2008. 27(50): p. 6462-72.
  • Misund, K., et al., MYC dysregulation in the progression of multiple myeloma. Leukemia, 2020. 34(1): p. 322-326.
  • Chng, W.J., et al., Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia, 2011. 25(6): p. 1026-35.
  • Walker, B.A., et al., Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. Blood Cancer J, 2014. 4(3): p. e191.
  • Avet-Loiseau, H., et al., Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome. Blood, 2007. 109(8): p. 3489-95.
  • Chng, W.J., R.P. Ketterling, and R. Fonseca, Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma. Genes Chromosomes Cancer, 2006. 45(12): p. 1111-20.
  • Hoctor, V.T. and L.J. Campbell, Hyperhaploid plasma cell myeloma. Cancer Genet, 2012. 205(7-8): p. 414-8.
  • Sawyer, J.R., et al., Hyperhaploidy is a novel high-risk cytogenetic subgroup in multiple myeloma. Leukemia, 2017. 31(3): p. 637-644.
  • Smadja, N.V., et al., Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer, 2003. 38(3): p. 234-9.
  • Mateo, G., et al., Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin Cancer Res, 2005. 11(10): p. 3661-7.
  • Chng, W.J., et al., A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood, 2005. 106(6): p. 2156-61.
  • Avet-Loiseau, H., et al., Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol, 2009. 27(27): p. 4585-90.
  • Besse, L., et al., Cytogenetics in multiple myeloma patients progressing into extramedullary disease. Eur J Haematol, 2016. 97(1): p. 93-100.
  • Fonseca, R., et al., Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia, 2001. 15(6): p. 981-6.
  • Avet-Louseau, H., et al., Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol, 2000. 111(4): p. 1116-7.
  • Tricot, G., et al., Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other kary-otype abnormalities. Blood, 1995. 86(11): p. 4250-6.
  • Jin, X., et al., Phosphorylated RB Promotes Cancer Immunity by Inhibiting NF-κB Activation and PD-L1 Expression. Mol Cell, 2019. 73(1): p. 22-35.e6.
  • Burkhart, D.L. and J. Sage, Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Reviews Cancer, 2008. 8(9): p. 671-682.
  • Taniguchi, K. and M. Karin, NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology, 2018. 18(5): p. 309-324.
  • Manguso, R.T., et al., In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature, 2017. 547(7664): p. 413-418.
  • Avet-Loiseau, H., et al., Long-term analysis of the IFM 99 trials for myeloma: cytogenetic abnormalities [t(4;14), del(17p), 1q gains] play a major role in defining long-term survival. J Clin Oncol, 2012. 30(16): p. 1949-52.
  • Hu, B., et al., High-risk myeloma and minimal residual disease postautologous-HSCT predict worse outcomes. Leuk Lymphoma, 2019. 60(2): p. 442-452.
  • Tiedemann, R.E., et al., Genetic aberrations and survival in plasma cell leukemia. Leukemia, 2008. 22(5): p. 1044-52.
  • Merz, M., et al., Baseline characteristics, chromosomal alterations, and treatment affecting prognosis of deletion 17p in newly diagnosed myeloma. Am J Hematol, 2016. 91(11): p. E473-e477.
  • Shah, V., et al., Molecular Characterisation of TP53 Aberrations in 1,777 Myeloma Trial Patients. Blood, 2017. 130(Supplement 1): p. 4331-4331.
  • Xiong, W., et al., An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood, 2008. 112(10): p. 4235-46.
  • Herrero, A.B., et al., Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. International Journal of Molecular Sciences, 2016. 17(12): p. 2003.
  • Thakurta, A., et al., High subclonal fraction of 17p deletion is associated with poor prognosis in multiple myeloma. Blood, 2019. 133(11): p. 1217-1221.
  • Chin, M., et al., Prevalence and timing of TP53 mutations in del(17p) myeloma and effect on survival. Blood Cancer Journal, 2017. 7(9): p. e610-e610.
  • Lionetti, M., et al., Molecular spectrum of TP53 mutations in plasma cell dyscrasias by next generation sequencing: an Italian cohort study and overview of the literature. Oncotarget, 2016. 7(16): p. 21353-61.
  • Joerger, A.C. and A.R. Fersht, Structural Biology of the Tumor Suppressor p53 and Cancer‐Associated Mutants, in Advances in Cancer Research. 2007, Academic Press. p. 1-23.
  • Rivlin, N., et al., Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & Cancer, 2011. 2(4): p. 466-474.
  • An, G., et al., Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica, 2014. 99(2): p. 353-9.
  • Hanamura, I., Gain/Amplification of Chromosome Arm 1q21 in Multiple Myeloma. Cancers (Basel), 2021. 13(2).
  • Sawyer, J.R., et al., Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12 approximately 23 amplicon. Br J Haematol, 2009. 147(4): p. 484- 94.
  • Fonseca, R., et al., International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia, 2009. 23(12): p. 2210-21.
  • Shaughnessy, J.D., Jr., et al., Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myelo-ma treated with Total Therapy 3. Blood, 2011. 118(13): p. 3512-24.
  • Zhan, F., et al., CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms. Blood, 2007. 109(11): p. 4995-5001.
  • Fonseca, R., et al., Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia, 2006. 20(11): p. 2034-40.
  • Hanamura, I., et al., Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood, 2006. 108(5): p. 1724-32.
  • Shaughnessy, J.D., Jr., et al., Testing standard and genetic parameters in 220 patients with multiple myeloma with complete data sets: superiority of molecular genetics. Br J Haematol, 2007. 137(6): p. 530-6.
  • Shah, V., et al., Prediction of outcome in newly diagnosed myeloma: a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia, 2018. 32(1): p. 102-110.
  • Boyd, K.D., et al., Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin Cancer Res, 2011. 17(24): p. 7776-84.
  • Li, F., et al., Identification of characteristic and prognostic values of chromosome 1p abnormality by multi-gene fluorescence in situ hybridization in multiple myeloma. Leukemia, 2016. 30(5): p. 1197-201.
  • Leone, P.E., et al., Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin Cancer Res, 2008. 14(19): p. 6033-41.
  • Walker, B.A., et al., A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood, 2010. 116(15): p. e56-65.
  • Walker, B.A., et al., Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood, 2011. 117(2): p. 553-562.
  • Hebraud, B., et al., Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: the IFM experience on 1195 patients. Leukemia, 2014. 28(3): p. 675-9.
  • Corre, J., et al., Multiple myeloma clonal evolution in homogeneously treated patients. Leukemia, 2018. 32(12): p. 2636-2647. 91. Maura, F., et al., Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun, 2019. 10(1): p. 3835.
  • Walker, B.A., et al., Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol, 2015. 33(33): p. 3911-20.
  • Lohr, J.G., et al., Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell, 2014. 25(1): p. 91-101.
  • Bolli, N., et al., Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Communications, 2014. 5(1): p. 2997.
  • John, R.J., et al., Clonal evolution in myeloma: the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients. Haematologica, 2019. 104(7): p. 1440-1450.
  • Weinhold, N., et al., Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood, 2016. 128(13): p. 1735-1744.
  • Lionetti, M. and A. Neri, Utilizing next-generation sequencing in the management of multiple myeloma. Expert Rev Mol Diagn, 2017. 17(7): p. 653-663.
  • Kumar, S.K. and S.V. Rajkumar, The multiple myelomas — current concepts in cytogenetic classification and therapy. Nature Reviews Clinical Oncology, 2018. 15(7): p. 409-421.
Еще
Статья научная