Геномные исследования домашних коз (Capra hircus L.): современное состояние и перспективы (обзор)

Бесплатный доступ

Домашняя коза (Capra hircus L.) - это универсальный вид мелкого рогатого скота, разводимый на всех континентах, геномные особенности которого становятся предметом исследования для научных коллективов во всем мире (A.M.A.M. Zonaed Siddiki с соавт., 2020; М.И. Селионова с соавт., 2021). Цель обзора - отразить результаты недавних исследований геномов домашних коз с использованием ДНК-чипов и анализа последовательностей полных геномов (WGS) и составить список генов-кандидатов, выявленных с помощью WGS анализа, которые ассоциированы с экономически значимыми и адаптивными признаками у домашних коз. В настоящем обзоре обобщены и проанализированы результаты исследований WGS с 2020 по 2024 год. Представлен список генов-кандидатов, идентифицированных на основе WGS и ассоциированных с экономически значимыми и адаптивными признаками у домашних коз. Проведен анализ применяемых методических и биоинформатических подходов для изучения WGS домашних коз. С помощью ДНК-чипов установлены генетические взаимосвязи различных пород и популяций коз (T.E. Deniskova с соавт., 2021; V. Mukhina с соавт., 2022; A. Manunza с соавт., 2023), оценено их генетическое разнообразие (B.A. Vlaic с соавт., 2024; G. Chessari с соавт., 2024), изучена интрогрессия с дикими видами рода Capra (H. Asadollahpour Nanaei с соавт., 2023; N. Pogorevc с соавт., 2024). Снижение стоимости WGS (B. Gu с соавт., 2022) стимулировало рост числа генерируемых WGS коз (S. Belay с соавт., 2024). Выявлены гены, находящиеся под давлением конвергентного отбора у овец и коз, включая DGKB , FAM155A, GRM5 (J. Yang с соавт., 2024) и CHST11 (L. Tao с соавт., 2021). Показано, что увеличение числа копий гена GBP1 связано с иммунорезистентностью и многоплодием (R.Q. Zhang с соавт., 2019; R. Di Gerlando с соавт., 2020; M. Arslan, 2023). Идентифицирована большая группа генов, влияющих на молочную продуктивность, - ANPEP (J. Ni с соавт., 2024), ERBB4 (Z. Liu с соавт., 2024), NCAM2 (Z. Amiri Ghanatsaman с соавт., 2023), GLYCAM1 (J. Xiong с соавт., 2023; H.B. Gebreselase с соавт., 2024), на качество туш - ACOX1 , PGM1 (Z.X. An с соавт., 2024 ), ZNF385B и MYOT (H.B. Gebreselase с соавт., 2024), на рост - HMGA2 и GJA3 (C. Li с соавт., 2024), живую массу - STIM1 и ADM (R. Saif с соавт., 2021), а также шерстную продуктивность - CCNA2 (Y. Rong с соавт., 2024) и FGF5 (Q. Zhao с соавт., 2024). Обнаружены гены TSHR и STC1 , связанные с одомашниванием у швейцарских пород (H. Signer-Hasler с соавт., 2022). Выявлены гены, вовлеченные в формирование защитных реакций при заболеваниях и действии неблагоприятных климатических факторов: PIGR , TNFAIP2 (Q. Chen с соавт., 2021 , 2022), KHDRBS2 (X. Sun с соавт., 2022), PPP2R3C (R. HuangFu с соавт., 2024), GNG2 (Z.X. An с соавт., 2024), HOXC12 и MAPK8IP2 (O. Sheriff с соавт., 2024). При полногеномном поиске ассоциаций (GWAS) на основе WGS идентифицированы гены-кандидаты, ассоциированные с размерами туловища, включая гены FNTB, CHURC1 (R. Yang с соавт., 2024), PSTPIP2 и SIPA1L (B. Gu с соавт., 2022), и с молочной продуктивностью (H. Wu с соавт., 2023). Гены-кандидаты выявлены на 21 из 29 аутосом, при этом наибольшее их число к настоящему времени идентифицировано на CHI5 (9 генов), CHI18 (8 генов), CHI1, CHI3, CHI57 и CHI23 (по 7 генов на каждой хромосоме). Таким образом, сформирован список целевых генов-кандидатов, которые могут быть использованы в программах маркер-ориентированной селекции.

Еще

Днк-чипы, полные геномы, гены-кандидаты, следы отбора (signatures of selection), вариация числа копий (cnv)

Короткий адрес: https://sciup.org/142243756

IDR: 142243756   |   DOI: 10.15389/agrobiology.2024.4.587rus

Список литературы Геномные исследования домашних коз (Capra hircus L.): современное состояние и перспективы (обзор)

  • Amiri Ghanatsaman Z., Ayatolahi Mehrgardi A., Asadollahpour Nanaei H., Esmailizadeh A. Comparative genomic analysis uncovers candidate genes related with milk production and adaptive traits in goat breeds. Scientific Reports, 2023, 13(1): 8722 (doi: 10.1038/s41598-023-35973-0).
  • Тарасова Е.И., Фролов А.Н., Лебедев С.В., Романов М.Н. История, разведение, селекция и генетика оренбургской породы коз. Мат.3-й Межд. науч.-практ. конф. «Молекулярно-генетические технологии анализа экспрессии генов продуктивности и устойчивости к заболеваниям животных». М., 2021: 450-454.
  • Селионова М.И., Трухачев В.И., Айбазов А-М.М., Столповский Ю.А., Зиновьева Н.А. Генетические маркеры в козоводстве (обзор). Сельскохозяйственная биология, 2021, 56(6): 1031-1048 (doi: 10.15389/agrobiology.2021.6.1031rus).
  • Zonaed Siddiki A.M.A.M., Miah G., Islam M.S., Kumkum M., Rumi M.H., Baten A., Hossain M.A. Goat genomic resources: the search for genes associated with its economic traits. International Journal of Genomics, 2020, 2020: 5940205 (doi: 10.1155/2020/5940205).
  • International Goat Genome Consortium (IGGC). Goat Genome 2013. Режим доступа: http://www.goatgenome.org. Без даты.
  • Tosser-Klopp G., Bardou P., Bouchez O., Cabau C., Crooijmans R., Dong Y., Donnadieu-Tonon C., Eggen A., Heuven H.C., Jamli S., Jiken A.J., Klopp C., Lawley C.T., McEwan J., Martin P., Moreno C.R., Mulsant P., Nabihoudine I., Pailhoux E., Palhière I., Rupp R., Sarry J., Sayre B.L., Tircazes A., Jun W., Wang W., Zhang W., International Goat Genome Consortium. Design and characterization of a 52K SNP chip for goats. PLoS ONE, 2014, 9(1): e86227 (doi: 10.1371/journal.pone.0086227).
  • Manunza A., Ramirez-Diaz J., Cozzi P., Lazzari B., Tosser-Klopp G., Servin B., Johansson A.M., Grøva L., Berg P., Våge D.I., Stella A. Genetic diversity and historical demography of underutilised goat breeds in North-Western Europe. Scientific Reports, 2023, 13(1): 20728 (doi: 10.1038/s41598-023-48005-8).
  • Mukhina V., Svishcheva G., Voronkova V., Stolpovsky Y., Piskunov A. Genetic diversity, population structure and phylogeny of indigenous goats of Mongolia revealed by SNP genotyping. Animals (Basel), 2022, 12(3): 221 (doi: 10.3390/ani12030221).
  • Deniskova T.E., Dotsev A.V., Selionova M.I., Reyer H., Sölkner J., Fornara M.S., Aybazov A.M., Wimmers K., Brem G., Zinovieva N.A. SNP-based genotyping provides insight into the West Asian origin of Russian local goats. Frontiers in Genetics, 2021, 12: 708740 (doi: 10.3389/fgene.2021.708740).
  • Senczuk G., Macrì M., Di Civita M., Mastrangelo S., Del Rosario Fresno M., Capote J., Pilla F., Delgado J.V., Amills M., Martinez A. The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data. Genetics, Selection, Evolution: GSE, 2024, 56(1): 2 (doi: 10.1186/s12711-023-00869-0).
  • Monau P.I., Visser C., Muchadeyi F.C., Okpeku M., Nsoso S.J., Van Marle-Köster E. Population structure of indigenous southern African goats based on the Illumina Goat50K SNP panel. Tropical Animal Health and Production, 2020, 52(4): 1795-1802 (doi: 10.1007/s11250-019-02190-9).
  • Vlaic B.A., Vlaic A., Russo I.R., Colli L., Bruford M.W., Odagiu A., Orozco-terWengel P., Climgen Consortium. Analysis of genetic diversity in Romanian Carpatina goats using SNP genotyping data. Animals (Basel), 2024, 14(4): 560 (doi: 10.3390/ani14040560).
  • Chessari G., Criscione A., Marletta D., Crepaldi P., Portolano B., Manunza A., Cesarani A., Biscarini F., Mastrangelo S. Characterization of heterozygosity-rich regions in Italian and worldwide goat breeds. Scientific Reports, 2024, 14(1): 3 (doi: 10.1038/s41598-023-49125-x ).
  • Pogorevc N., Dotsev A., Upadhyay M., Sandoval-Castellanos E., Hannemann E., Simčič M., Antoniou A., Papachristou D., Koutsouli P., Rahmatalla S., Brockmann G, Sölkner J., Burger P., Lymberakis P., Poulakakis N., Bizelis I., Zinovieva N., Horvat S., Medugorac I. Whole-genome SNP genotyping unveils ancestral and recent introgression in wild and domestic goats. Molecular Ecology, 2024, 33(1): e17190 (doi: 10.1111/mec.17190).
  • Somenzi E., Senczuk G., Ciampolini R., Cortellari M., Vajana E., Tosser-Klopp G., Pilla F., Ajmone-Marsan P., Crepaldi P., Colli L. The SNP-based profiling of Montecristo feral goat populations reveals a history of isolation, bottlenecks, and the effects of management. Genes (Basel), 2022, 3(2): 213 (doi: 10.3390/genes13020213).
  • Rodionov A., Deniskova T., Dotsev A., Volkova V., Petrov S., Kharzinova V., Koshkina O., Abdelmanova A., Solovieva A., Shakhin A., Bardukov N., Zinovieva N. Combination of multiple microsatellite analysis and genome-wide SNP genotyping helps to solve wildlife crime: a case study of poaching of a Caucasian tur (Capra caucasica) in Russian mountain national park. Animals (Basel), 2021, 11(12): 3416 (doi: 10.3390/ani11123416).
  • Kaushik R., Arya A., Kumar D., Goel A., Rout P.K. Genetic studies of heat stress regulation in goat during hot climatic condition. Journal of Thermal Biology, 2023, 113: 103528 (doi: 10.1016/j.jtherbio.2023.103528).
  • Waineina R.W., Okeno T.O., Ilatsia E.D., Ngeno K. Selection signature analyses revealed genes associated with adaptation, production, and reproduction in selected goat breeds in Kenya. Frontiers in Genetics, 2022, 13: 858923 (doi: 10.3389/fgene.2022.858923).
  • Sallam A.M., Reyer H., Wimmers K., Bertolini F., Aboul-Naga A., Braz C.U., Rabee A.E. Genome-wide landscape of runs of homozygosity and differentiation across Egyptian goat breeds. BMC Genomics, 2023, 24(1): 573 (doi: 10.1186/s12864-023-09679-6).
  • Asadollahpour Nanaei H., Cai Y., Alshawi A., Wen J., Hussain T., Fu W.W., Xu N.Y., Essa A., Lenstra J.A., Wang X., Jiang Y. Genomic analysis of indigenous goats in Southwest Asia reveals evidence of ancient adaptive introgression related to desert climate. Zoological Research, 2023, 44(1): 20-29 (doi: 10.24272/j.issn.2095-8137.2022.242).
  • Serranito B., Cavalazzi M., Vidal P., Taurisson-Mouret D., Ciani E., Bal M., Rouvellac E., Servin B., Moreno-Romieux C., Tosser-Klopp G., Hall S.J.G., Lenstra J.A., Pompanon F., Benjelloun B., Da Silva A. Local adaptations of Mediterranean sheep and goats through an integrative approach. Scientific Reports, 2021, 11(1): 21363 (doi: 10.1038/s41598-021-00682-z).
  • Manunza A., Diaz J.R., Sayre B.L., Cozzi P., Bobbo T., Deniskova T., Dotsev A., Zinovieva N., Stella A. Discovering novel clues of natural selection on four worldwide goat breeds. Scientific Reports, 2023, 13(1): 2110 (doi: 10.1038/s41598-023-27490-x).
  • Peng W., Zhang Y., Gao L., Shi W., Liu Z., Guo X., Zhang Y., Li B., Li G., Cao J., Yang M. Selection signatures and landscape genomics analysis to reveal climate adaptation of goat breeds. BMC Genomics, 2024, 25(1): 420 (doi: 10.1186/s12864-024-10334-x).
  • Zhang L., Wang F., Gao G., Yan X., Liu H., Liu Z., Wang Z., He L., Lv Q., Wang Z., Wang R., Zhang Y., Li J., Su R. Genome-wide association study of body weight traits in Inner Mongolia Cashmere goats. Frontiers in Veterinary Science, 2021, 8: 752746 (doi: 10.3389/fvets.2021.752746).
  • Easa A.A., Selionova M., Aibazov M., Mamontova T., Sermyagin A., Belous A., Abdelmanova A., Deniskova T., Zinovieva N. Identification of genomic regions and candidate genes associated with body weight and body conformation traits in Karachai goats. Genes (Basel), 2022, 13(10): 1773 (doi: 10.3390/genes13101773).
  • Moaeen-Ud-Din M., Danish Muner R., Khan M.S. Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Scientific Reports, 2022, 12(1): 9891 (doi: 10.1038/s41598-022-14018-y).
  • Massender E., Oliveira H.R., Brito L.F., Maignel L., Jafarikia M., Baes C.F., Sullivan B., Schenkel F.S. Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. Journal of Dairy Science, 2023, 106(2): 1168-1189 (doi: 10.3168/jds.2022-22223).
  • Islam R., Liu X., Gebreselassie G., Abied A., Ma Q., Ma Y. Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat. Genes & Genomics, 2020, 42(8): 893 -899 (doi: 10.1007/s13258-020-00937-5).
  • Qiao X., Su R., Wang Y., Wang R., Yang T., Li X., Chen W., He S., Jiang Y., Xu Q., Wan W., Zhang Y., Zhang W., Chen J., Liu B., Liu X., Fan Y., Chen D., Jiang H., Fang D., Liu Z., Wang X., Zhang Y., Mao D., Wang Z., Di R., Zhao Q., Zhong T., Yang H., Wang J., Wang W., Dong Y., Chen X., Xu X., Li J. Genome-wide target enrichment-aided chip design: a 66 K SNP chip for Cashmere goat. Scientific Reports,2017, 7(1): 8621 (doi: 10.1038/s41598-017-09285-z).
  • Guan S., Li W., Jin H., Zhang L., Liu G. Development and validation of a 54K genome-wide liquid SNP chip panel by target sequencing for dairy goat. Genes (Basel), 2023, 14(5): 1122 (doi: 10.3390/genes14051122).
  • Vijh R.K., Sharma U., Kapoor P., Raheja M., Arora R., Ahlawat S., Dureja V. Design and validation of high-density SNP array of goats and population stratification of Indian goat breeds. Gene, 2023, 885: 147691 (doi: 10.1016/j.gene.2023.147691).
  • Fitak R.R., Mohandesan E., Corander J., Yadamsuren A., Chuluunbat B., Abdelhadi O., Raziq A., Nagy P., Walzer C., Faye B., Burger P.A. Genomic signatures of domestication in Old World camels. Communications Biology, 2020, 3(1): 316 (doi: 10.1038/s42003-020-1039-5).
  • Wang C., Wu D.D., Yuan Y.H., Yao M.C., Han J.L., Wu Y.J., Shan F., Li W.P., Zhai J.Q., Huang M., Peng S.M., Cai Q.H., Yu J.Y., Liu Q.X., Liu Z.Y., Li L.X., Teng M.S., Huang W., Zhou J.Y., Zhang C., Chen W., Tu X.L. Population genomic analysis provides evidence of the past success and future potential of South China tiger captive conservation. BMC Biology, 2023, 21(1): 64 (doi: 10.1186/s12915-023-01552-y).
  • Ryder O., Miller W., Ralls K., Ballou J.D., Steiner C.C., Mitelberg A., Romanov M., Chemnick L.G., Mace M., Schuster S. Whole genome sequencing of California condors is now utilized for guiding genetic management. In: International Plant and Animal Genome XXIV Conference. San Diego, CA, 2016: 8-13.
  • Volkova N.A., Romanov M.N., Abdelmanova A.S., Larionova P.V., German N.Y., Vetokh A.N., Shakhin A.V., Volkova L.A., Anshakov D.V., Fisinin V.I., Narushin V.G., Griffin D.K., Sölkner J., Brem G., McEwan J.C., Brauning R., Zinovieva N.A. Genotyping-by-sequencing strategy for integrating genomic structure, diversity and performance of various Japanese quail (Coturnix japonica) breeds. Animals (Basel), 2023, 13(22): 3439 (doi: 10.3390/ani13223439).
  • Volkova N.A., German N.Y., Larionova P.V., Vetokh A.N., Romanov M.N., Zinovieva N.A. Identification of SNPs and candidate genes associated with abdominal fat deposition in quails (Coturnix japonica). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2023, 58(6): 1079-1087 (doi: 10.15389/agrobiology.2023.6.1079eng).
  • Volkova N.A., Romanov M.N., Abdelmanova A.S., Larionova P.V., German N.Y., Vetokh A.N., Shakhin A.V., Volkova L.A., Sermyagin A.A., Anshakov D.V., Fisinin V.I., Griffin D.K., Sölkner J., Brem G., McEwan J.C., Brauning R., Zinovieva N.A. Genome-wide association study revealed putative SNPs and candidate genes associated with growth and meat traits in Japanese quail. Genes (Basel), 2024, 15(3): 294 (doi: 10.3390/genes15030294).
  • Romanov M.N., Shakhin A.V., Abdelmanova A.S., Volkova N.A., Efimov D.N., Fisinin V.I., Korshunova L.G., Anshakov D.V., Dotsev A.V., Griffin D.K., Zinovieva N.A. Dissecting selective signatures and candidate genes in grandparent lines subject to high selection pressure for broiler production and in a local Russian chicken breed of Ushanka. Genes (Basel), 2024, 15(4): 524 (doi: 10.3390/genes15040524).
  • Gu B., Sun R., Fang X., Zhang J., Zhao Z., Huang D., Zhao Y., Zhao Y. Genome-wide association study of body conformation traits by whole genome sequencing in Dazu black goats. Animals (Basel), 2022, 12(5): 548 (doi: 10.3390/ani12050548).
  • Sanchez M.P., Guatteo R., Davergne A., Saout J., Grohs C., Deloche M.C., Taussat S., Fritz S., Boussaha M., Blanquefort P., Delafosse A., Joly A., Schibler L., Fourichon C., Boichard D. Identification of the ABCC4, IER3, and CBFA2T2 candidate genes for resistance to paratuberculosis from sequence-based GWAS in Holstein and Normande dairy cattle. Genetics, Selection, Evolution: GSE, 2020, 52(1): 14 (doi: 10.1186/s12711-020-00535-9).
  • Tribout T., Croiseau P., Lefebvre R., Barbat A., Boussaha M., Fritz S., Boichard D., Hoze C., Sanchez M.P. Confirmed effects of candidate variants for milk production, udder health, and udder morphology in dairy cattle. Genetics, Selection, Evolution: GSE, 2020, 52(1): 55 (doi: 10.1186/s12711-020-00575-1).
  • Wu P., Wang K., Zhou J., Chen D., Yang Q., Yang X., Liu Y., Feng B., Jiang A., Shen L., Xiao W., Jiang Y., Zhu L., Zeng Y., Xu X., Li X., Tang G. GWAS on imputed whole-genome resequencing from genotyping-by-sequencing data for farrowing interval of different parities in pigs. Frontiers in Genetics, 2019, 10: 1012 (doi:10.3389/fgene.2019.01012).
  • van den Berg S., Vandenplas J., van Eeuwijk F.A., Bouwman A.C., Lopes M.S., Veerkamp R.F. Imputation to whole-genome sequence using multiple pig populations and its use in genome-wide association studies. Genetics, Selection, Evolution: GSE, 2019, 51(1): 2 (doi: 10.1186/s12711-019-0445-y).
  • Talouarn E., Bardou P., Palhière I., Oget C., Clément V., VarGoats Consortium, Tosser-Klopp G., Rupp R., Robert-Granié C. Genome wide association analysis on semen volume and milk yield using different strategies of imputation to whole genome sequence in French dairy goats. BMC Genetics, 2020, 21(1): 19 (doi: 10.1186/s12863-020-0826-9).
  • VarGoats: Identification of Variations in Goat genomes related to domestication and adaptation (2013). Режим доступа: https://www.goatgenome.org/vargoats.html. Без даты.
  • Denoyelle L., Talouarn E., Bardou P., Colli L., Alberti A., Danchin C., Del Corvo M., Engelen S., Orvain C., Palhière I., Rupp R., Sarry J., Salavati M., Amills M., Clark E., Crepaldi P., Faraut T., Masiga C.W., Pompanon F., Rosen B.D., Stella A., Van Tassell C.P., Tosser-Klopp G., VarGoats Consortium. VarGoats project: a dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genetics, Selection, Evolution: GSE, 2021, 53(1): 86 (doi: 10.1186/s12711-021-00659-6).
  • Belay S., Belay G., Nigussie H., Jian-Lin H., Tijjani A., Ahbara A. M., Tarekegn G. M., Woldekiros H.S., Mor S., Dobney K., Lebrasseur O., Hanotte O., Mwacharo J. M. Whole-genome resource sequences of 57 indigenous Ethiopian goats. Scientific Data, 2024, 11(1): 139 (doi: 10.1038/s41597-024-02973-2).
  • Yang J., Wang D.F., Huang J.H., Zhu Q.H., Luo L.Y., Lu R., Xie X.L., Salehian-Dehkordi H., Esmailizadeh A., Liu G.E., Li M.H. Structural variant landscapes reveal convergent signatures of evolution in sheep and goats. Genome Biology, 2024, 25(1): 148 (doi: 10.1186/s13059-024-03288-6).
  • Mulsant P., Lecerf F., Fabre S., Schibler L., Monget P., Lanneluc I., Pisselet C., Riquet J., Monniaux D., Callebaut I., Cribiu E., Thimonier J., Teyssier J., Bodin L., Cognié Y., Chitour N., Elsen J.M. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(9): 5104-5109 (doi: 10.1073/pnas.091577598).
  • Tao L., He X., Jiang Y., Liu Y., Ouyang Y., Shen Y., Hong Q., Chu M. Genome-wide analyses reveal genetic convergence of prolificacy between goats and sheep. Genes (Basel), 2021, 12(4): 480 (doi: 10.3390/genes12040480).
  • Zheng Z., Wang X., Li M., Li Y., Yang Z., Wang X., Pan X., Gong M., Zhang Y., Guo Y., Wang Y., Liu J., Cai Y., Chen Q., Okpeku M., Colli L., Cai D., Wang K., Huang S., Sonstegard T.S., Esmailizadeh A., Zhang W., Zhang T., Xu Y., Xu N., Yang Y., Han J., Chen L., Lesur J., Daly K.G., Bradley D.G., Heller R., Zhang G., Wang W., Chen Y., Jiang Y. The origin of domestication genes in goats. Science Advances, 2020, 6(21): eaaz5216 (doi: 10.1126/sciadv.aaz5216).
  • Li C., Wu Y., Chen B., Cai Y., Guo J., Leonard A.S., Kalds P., Zhou S., Zhang J., Zhou P., Gan S., Jia T., Pu T., Suo L., Li Y., Zhang K., Li L., Purevdorj M., Wang X., Li M., Wang Y., Liu Y., Huang S., Sonstegard T., Wang M.S., Kemp S., Pausch H., Chen Y., Han J.L., Jiang Y., Wang X. Markhor-derived introgression of a genomic region encompassing PAPSS2 confers high-altitude adaptability in Tibetan goats. Molecular Biology and Evolution, 2022, 39(12): msac253 (doi: 10.1093/molbev/msac253).
  • Arslan M. Whole-genome sequencing and genomic analysis of Norduz goat (Capra hircus). Mammalian Genome, 2023, 34(3): 437-448 (doi: 10.1007/s00335-023-09990-3).
  • Di Gerlando R., Mastrangelo S., Moscarelli A., Tolone M., Sutera A.M., Portolano B., Sardina M.T. Genomic structural diversity in local goats: analysis of copy-number variations. Animals (Basel), 2020, 10(6): 1040 (doi: 10.3390/ani10061040).
  • Zhang R.Q., Wang J.J., Zhang T., Zhai H.L., Shen W. Copy-number variation in goat genome equence: a comparative analysis of the different litter size trait groups. Gene, 2019, 696: 40-46 (doi: 10.1016/j.gene.2019.02.027).
  • Zhou A., Ding Y., Zhang X., Zhou Y., Liu Y., Li T., Xiao L. Whole-genome resequencing reveals new mutations in candidate genes for Beichuan-white goat prolificacya. Animal Biotechnology, 2024, 35(1): 2258166 (doi: 10.1080/10495398.2023.2258166).
  • Tarasova E.I., Frolov A.N., Lebedev S.V., Romanov M.N. Landmark native breed of the Orenburg goats: progress in its breeding and genetics and future prospects. Animal Biotechnology, 2023, 34(9): 5139-5154 (doi: 10.1080/10495398.2022.2154221).
  • Xiong J., Bao J., Hu W., Shang M., Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Frontiers in Genetics, 2023, 13: 1044017 (doi: 10.3389/fgene.2022.1044017).
  • Saif R., Henkel J., Mahmood T., Ejaz A., Ahmad F., Zia S. Detection of whole genome selection signatures of Pakistani Teddy goat. Molecular Biology Reports, 2021, 48(11): 7273-7280 (doi: 10.1007/s11033-021-06726-x).
  • Sheriff O., Ahbara A.M., Haile A., Alemayehu K., Han J.L., Mwacharo J.M. Whole-genome resequencing reveals genomic variation and dynamics in Ethiopian indigenous goats. Frontiers in Genetics, 2024, 15: 1353026 (doi: 10.3389/fgene.2024.1353026).
  • Gebreselase H.B., Nigussie H., Wang C., Luo C. Genetic diversity, population structure and selection signature in Begait goats revealed by whole-genome sequencing. Animals (Basel), 2024, 14(2): 307 (doi: 10.3390/ani14020307).
  • Li C., Wang X., Li H., Ahmed Z., Luo Y., Qin M., Yang Q., Long Z., Lei C., Yi K. Whole-genome resequencing reveals diversity and selective signals in the Wuxue goat. Animal Genetics, 2024, 55(4): 575-587 (doi: 10.1111/age.13437).
  • Liu Z., Li H., Luo Y., Li J., Sun A., Ahmed Z., Zhang B., Lei C., Yi K. Comprehensive whole-genome resequencing unveils genetic diversity and selective signatures of the Xiangdong black goat. Frontiers in Genetics, 2024, 15: 1326828 (doi: 10.3389/fgene.2024.1326828).
  • Ni J., Xian M., Ren Y., Yang L., Li Y., Guo S., Ran B., Hu J. Whole-genome resequencing reveals candidate genes associated with milk production trait in Guanzhong dairy goats. Animal Genetics, 2024, 55(1): 168-172 (doi: 10.1111/age.13380).
  • An Z.X., Shi L.G., Hou G.Y., Zhou H.L., Xun W.J. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal, 2024, 18(6): 101147 (doi: 10.1016/j.animal.2024.101147).
  • HuangFu R., Li H., Luo Y., He F., Huan C., Ahmed Z., Zhang B., Lei C., Yi K. Illuminating genetic diversity and selection signatures in Matou goats through whole-genome sequencing analysis. Genes (Basel), 2024, 15(7): 909 (doi: 10.3390/genes15070909).
  • Chen Q., Huang Y., Wang Z., Teng S., Hanif Q., Lei C., Sun J. Whole-genome resequencing reveals diversity and selective signals in Longlin goat. Gene, 2021, 771: 145371 (doi: 10.1016/j.gene.2020.145371).
  • Chen Q., Chai Y., Zhang W., Cheng Y., Zhang Z., An Q., Chen S., Man C., Du L., Zhang W., Wang F. Whole-genome sequencing reveals the genomic characteristics and selection signatures of Hainan black goat. Genes (Basel), 2022, 13(9): 1539 (doi: 10.3390/genes13091539).
  • Sun X., Guo J., Li L., Zhong T., Wang L., Zhan S., Lu J., Wang D., Dai D., Liu G.E., Zhang H. Genetic diversity and selection signatures in Jianchang Black goats revealed by whole-genome sequencing data. Animals (Basel), 2022, 12(18): 2365 (doi: 10.3390/ani12182365).
  • Wu C., Ma S., Zhao B., Qin C., Wu Y., Di J., Suo L., Fu X. Drivers of plateau adaptability in cashmere goats revealed by genomic and transcriptomic analyses. BMC Genomics, 2023, 24(1): 428 (doi: 10.1186/s12864-023-09333-1).
  • Rong Y., Wang X., Na Q., Ao X., Xia Q., Guo F., Han M., Ma R., Shang F., Liu Y., Lv Q., Wang Z., Su R., Zhang Y., Wang R. Genome-wide association study for cashmere traits in Inner Mongolia cashmere goat population reveals new candidate genes and haplotypes. BMC Genomics,2024, 25(1): 658 (doi: 10.1186/s12864-024-10543-4).
  • Zhao Q., Huang C., Chen Q., Su Y., Zhang Y., Wang R., Su R., Xu H., Liu S., Ma Y., Zhao Q., Ye S. Genomic inbreeding and runs of homozygosity analysis of Cashmere goat. Animals (Basel), 2024, 14(8): 1246 (doi: 10.3390/ani14081246).
  • E G.X., Zhao Y.J., Huang Y.F. Selection signatures of litter size in Dazu black goats based on a whole genome sequencing mixed pools strategy. Molecular Biology Reports, 2019, 46(5): 5517-5523 (doi: 10.1007/s11033-019-04904-6).
  • Song Y., Han J., Cao F., Ma H., Cao B., An X. Endometrial genome-wide DNA methylation patterns of Guanzhong dairy goats at days 5 and 15 of the gestation period. Animal Reproduction Science, 2019, 208: 106124 (doi: 10.1016/j.anireprosci.2019.106124).
  • Xin D., Bai Y., Bi Y., He L., Kang Y., Pan C., Zhu H., Chen H., Qu L., Lan X. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. Journal of Zhejiang University. Science. B, 2021, 22(9): 757-766 (doi: 10.1631/jzus.B2100079).
  • Zhang T., Wang Z., Li Y., Zhou B., Liu Y., Li J., Wang R., Lv Q., Li C., Zhang Y., Su R. Genetic diversity and population structure in five Inner Mongolia Cashmere goat populations using whole-genome genotyping. Animal Bioscience, 2024, 37(7), 1168-1176 (doi: 10.5713/ab.23.0424).
  • Wang K., Liu X., Qi T., Hui Y., Yan H., Qu L., Lan X., Pan C. Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus). Genomics, 2021, 113(1 Pt 1): 142-150 (doi: 10.1016/j.ygeno.2020.11.024).
  • Signer-Hasler H., Henkel J., Bangerter E., Bulut Z., VarGoats Consortium; Drögemüller C., Leeb T., Flury C. Runs of homozygosity in Swiss goats reveal genetic changes associated with domestication and modern selection. Genetics, Selection, Evolution: GSE, 2022, 54(1): 6 (doi: 10.1186/s12711-022-00695-w).
  • Song C.F.L.Y., Zhang D.X., Jiao L., Wang G.M., Liu X.J. Anatomical observation of reproductive organs in intersex goats. Heilongjiang Animal Science and Veterinary Medicine, 2015, 16: 81 (in Chinese).
  • E G.X., Zhou D.K., Zheng Z.Q., Yang B.G., Li X.L., Li L.H., Zhou R.Y., Nai W.H., Jiang X.P., Zhang J.H., Hong Q.H., Ma Y.H., Chu M.X., Gao H.J., Zhao Y.J., Duan X.H., He Y.M., Na R.S., Han Y.G., Zeng Y., Jiang Y., Huang Y.F. Identification of a goat intersexuality-associated novel variant through genome-wide resequencing and hi-C. Frontiers in Genetics, 2021, 11: 616743 (doi: 10.3389/fgene.2020.616743).
  • Simon R., Lischer H.E.L., Pieńkowska-Schelling A., Keller I., Häfliger I.M., Letko A., Schelling C., Lühken G., Drögemüller C. New genomic features of the polled intersex syndrome variant in goats unraveled by long-read whole-genome sequencing. Animal Genetics, 2020, 51(3): 439-448 (doi: 10.1111/age.12918).
  • Guo J., Jiang R., Mao A., Liu G.E., Zhan S., Li L., Zhong T., Wang L., Cao J., Chen Y., Zhang G., Zhang H. Genome-wide association study reveals 14 new SNPs and confirms two structural variants highly associated with the horned/polled phenotype in goats. BMC Genomics, 2021, 22(1): 769 (doi: 10.1186/s12864-021-08089-w).
  • Thanatsis N., Kaponis A., Koika V., Georgopoulos N.A., Decavalas G.O. Reduced Foxo3a, FoxL2, and p27 mRNA expression in human ovarian tissue in premature ovarian insufficiency. Hormones (Athens, Greece), 2019, 18(4): 409-415 (doi: 10.1007/s42000-019-00134-4).
  • Yang R., Zhou D., Tan X., Zhao, Z., Lv Y., Tian X., Ren L., Wang Y., LiJ., Zhao, Y., Zhang J. Genome-wide association study of body conformation traits in Tashi goats (Capra hircus). Animals (Basel), 2024, 14(8): 1145 (doi: 10.3390/ani14081145).
  • Wu H., Yi Q., Ma W., Yan L., Guan S., Wang L., Yang G., Tan X., Ji P., Liu G. Genome-wide analysis for the melatonin trait associated genes and SNPs in dairy goat (Capra hircus) as the molecular breeding markers. Frontiers in Genetics, 2023, 14: 1118367 (doi: 10.3389/fgene.2023.1118367).
  • Saleh A.A., Xue L., Zhao Y. Screening Indels from the whole genome to identify the candidates and their association with economic traits in several goat breeds. Functional & Integrative Genomics, 2023, 23(1): 58 (doi: 10.1007/s10142-023-00981-w).
Еще
Статья обзорная