Geoactive zones and the structure of plant communities in connection with new discoveries in space geology
Автор: Rogozin Mikhail, Mikhalev Vyacheslav, Rybalchenko Anatolii
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Биологические науки
Статья в выпуске: 1 т.7, 2021 года.
Бесплатный доступ
The purpose of the work is to find out how plants react to such zones and whether their phytoindication is possible. Two territories of the Perm territory were studied: the Vishersky Nature Reserve and forests near Perm. The research methodology included lineament and geostructurometric analysis of space images and special maps using ring structures discovered on the Earth’s surface by Yu. I. Fivenskii, as well as phyto- and bioindication of small geoactive zones. It was found that in the forests near Perm favorable zones of such zones occupy 1.44% of the territory and within their limits the safety of common pine ( Pinus sylvestris L.) is 29-42 times higher. Phytoindication of small geoactive zones of 1.0 and 3.0 m by common pine was shown in the zones of influence of these zones: 0-18 cm - the radius of inhibition with the absence of trees; 19-29 cm - the depression zone with small trees; 30-48 cm - the comfort zone with medium and large trees. Two types of networks formed by zones of 1.0 and 8.0 m in size near Perm (on the plain) and in the reserve (in the mountains) were compared. In the mountains, with high geodynamic activity of territories, the networks are oriented in one direction, while on the plain their orientation is misaligned by 30°. In the reserve, large trees of Siberian spruce ( Picea obovata Ledeb.) were located on small geoactive zones of 1.0 and 8.0 m, and trees of Siberian pine ( Pinus sibirica Du Tour) - on zones 1.0 and 3.0 m in combination with zones 16, 32 and 55 m. In the subgolets zone, ring structures of perennial plants were also found on the first two types of zones. In addition, along the edges of the swamps, chains of trees were found whose direction coincides with ring faults, and the chains themselves are similar to the structure of small geoactive zones networks, and this fractality requires field verification. The hypothesis recharge of plants within geoactive zones is proposed, which also explains the successful growth of trees on rocks, where the amount of available soil is minimal.
Neotectonics, geoactive zones, stand, plants, structure of phytocenosis
Короткий адрес: https://sciup.org/14117942
IDR: 14117942 | DOI: 10.33619/2414-2948/62/03