Hybrid System Converting Solar Energy Into Electric Energy
Автор: Ismanov Yu., Niyazov N., Dzhamankyzov N.
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Физико-математические науки
Статья в выпуске: 9 т.7, 2021 года.
Бесплатный доступ
The article discusses a mathematical model of a hybrid system that combines photovoltaic and thermoelectric methods for converting concentrated solar energy into electrical energy. The specified mathematical model makes it possible to determine the temperatures of the photovoltaic module, as well as the temperature of the electrodes of the thermoelectric generator module. Optimal operating conditions have been determined for the hybrid system, taking into account the thermal contact resistance at the hot and cold sides of the thermoelectric generator. The simulation proceeded from the fact that only part of the absorbed solar radiation is converted into electricity due to the photoelectric effect, some part is lost due to radiation and convection from the upper surface of the photovoltaic module into the environment, and the rest is transferred to a thermoelectric generator connected to the lower part. photovoltaic module. A thermoelectric generator converts some of the thermal energy it receives from the photovoltaic module into electricity through the Seebeck effect, but most of it goes to the cooling system. The conversion of heat into electrical energy was based on the well-known Seebeck and Peltier effects. Along with these effects, such effects were taken into account as the formation of Joule heat due to the presence of electric current in the thermoelectric generator, Fourier thermal conductivity, as a consequence of the appearance of a temperature gradient in the transitions of a thermoelectric generator and Thomson heat, which arises both due to the presence of a temperature gradient, and electric current. The resulting model of the hybrid system makes it possible to study the effect of changing the temperature difference between the hot and cold electrodes of the thermoelectric generator and the resistance of the external circuit on the performance of the hybrid system. The model also allows the determination of the optimal operating conditions for the hybrid system, taking into account the thermal contact resistance on the hot and cold sides of the thermoelectric generator.
Hybrid system, photovoltaic converter, thermoelectric converter, solar energy, concentrator, power output
Короткий адрес: https://sciup.org/14119591
IDR: 14119591 | DOI: 10.33619/2414-2948/70/01