Гидроманипуляторы в подводной и радиационных средах: обзор тенденций

Бесплатный доступ

В статье рассмотрены различные аспекты, связанные с применением гидропривода в манипуляционных системах, и их сравнение с электроприводом. Приведены модели гидроприводов и манипуляторов на их основе. Дан обзор применяемых схем управления гидроприводом. Рассматриваются тенденции в управлении и моделировании.

Гидравлика, манипулятор, актуатор, система управления, энергоэффективность

Короткий адрес: https://sciup.org/146282632

IDR: 146282632

Список литературы Гидроманипуляторы в подводной и радиационных средах: обзор тенденций

  • Hollerbach J., Hunter I., Ballantyne J. A Comparative analysis of actuator technologies for robotics. Robotics Rev. 2, 1992, 299–342.
  • Power and torque density [Electronic resourse] – Access: https://www.emobility-engineering.com/challenge-of-power-torque-density/
  • Бондарева Н. В. и др. Сверхвысоковакуумные жидкости для открытых космических систем отвода низкопотенциального тепла. Вестник Московского авиационного института, 2012, Т‑19,3, 54–61 [Bondareknko N. V. Superhighvacuum liquids for the space system of thermal conduction for low potential heat, Vestnik of Moscow aviation institute, 2012, Т‑19,3, 54–61 (inRus.)]
  • Siciliano B. and Khatib O. Springer Handbook of Robotics. Secaucus. NJ, USA: Springer-Verlag New York, Inc., 2007, 2227.
  • Magana B., Sangiah O., etc. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control. Frontiers in Robotics and AI, 2018, 5.
  • Merritt H. E. Hydraulic Control System, John Wiley, New York, 1967.
  • Whitcomb L. L. (n.d.). Underwater robotics: out of the research laboratory and into the field. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. SymposiaProceedings (Cat. No.00CH37065). doi:10.1109/robot.2000.844135
  • Окорочков В.В., Окорочкова В. М., Шафранов В. В. Актуальность и направления развития роторно-поршневой тематики. Вестник Самарского университета. Аэрокосмическая техника, технологии машиностроения, 2014, 13(5–3), 82–91 [Okorochkov V. V., Okorochkova V. M., Shafranov V. V. Relevance and directions of development of rotary-piston themes. Bulletins of Samara University. Aerospace Engineering, Technology and Mechanical Engineering, 2014, 13(5–3), 82–91 (in Rus.)]
  • Robaid: SAUVIM robot completed its first fully autonomous mission (2022) [Electronic resourse] – Access: http://www.robaid. com/robotics/sauvim-robot-completed-its-first-fully-autonomous-mission.htm
  • Autonomous Underwater Intervention: the SAUVIM Project [Electronic resourse] – Access: https://gmarani.org/na/sauvim/index.html
  • Sivčev S., Coleman J., Omerdić E., Dooly G., Toal D. Underwater manipulators: A review. Ocean Engineering, 2018, 163, 431–450.
  • Ishitsuka M., Ishii, K. Development and control of an underwater manipulator forAUV, Prog. of 2007 Symposium on Underwater Technology and Workshop on ScientificUse of Submarine Cables and Related Technologies, 2007, 337–342.
  • Ishitsuka M., Ishii K., 2007b. Modularity development and control of an underwater manipulator for AUV. Proc. of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, 3648–3653.
  • Hildebrandt M., Kerdels J., Albiez J., Kirchner F. A multi-layered controller approach for high precision end-effector control of hydraulic underwater manipulator systems. Proceedings of the OCEANS 2009, 2009 1–5.
  • Ou Y., Xu B., Cai H., Zhao J., & Fan J. (2022). An overview on mobile manipulator in nuclear applications. 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR), 2022, 239–243.
  • Bogue R. Robots in the nuclear industry: a review of technologies and applications. Industrial Robot: An International Journal, 2011, 38(2), 113–118.
  • Smith J. S., Yu R., Sarafis I., Lucas J. Computer vision control of an underwater manipulator. Proceedings of the OCEANS ’94. ’Oceans Engineering for Today’s Technology and Tomorrow’s Preservation’,1994. 1. 187–192.
  • Bakari M., Zied K., Seward D. Development of a Multi-Arm Mobile Robot for Nuclear Decommissioning Tasks. International Journal of Advanced Robotic Systems., 2007, 4. 10.5772/5665.
  • Dunnigan M. W., Lane D. M., Clegg A. C., Edwards I. Hybrid position/force control of a hydraulic underwater manipulator. IEE Proc. Contr. Theor., 1996, Appl., 143(2), 145–151.
  • Lu C., Yang T., Jin K., Gao N., Xiu P., Zhang Y., Wang L. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Materialia,2017, 127, 98–107
  • Дубровский В. Б. [и др.] Радиационная стойкость материалов: справочник: под ред. В. Б. Дубровского. М., Атомиздат, 1973, 262. 547 [Dubrovsky V. B. [et al.] Radiation resistance of materials, reference: ed. by V. B. Dubrovsky. M., Atomizdat, 1973, 262, 547]
  • Безродных И.П., Тютнев А. П., Семёнов В. Т. Радиационные эффекты в космосе. От-крытое АО «Науч.-произв. корпорация «Космические системы мониторинга, информ.-управ-ляющие и электромеханические комплексы им. А. Г. Иосифьяна, Москва. Корпорация «ВНИ-ИЭМ», 2014, 25 [Bezrodnykh I. P., Tyutnev A. P., Semenov V. T. Radiative effect sin space.Open JSC «Nauch.-prosv. Corporation “Space monitoring systems, inform.-control and electromechanical complexes named after A. G. Iosifyan, Moscow, Corporation “VNIIEM”, 2014, 25(in Rus.)]
  • Листы на основе терморасширенного ГРАФИТА (ТРГ) [Электронный ресурс] – Режим доступа: https://germett.ru/listyi-na-osnove-termorasshirennogo-grafita-trg/– Заглавие с экра-на. [Sheets based on thermally expanded GRAPHITE (TRH)] – Access: https://germett.ru/listyi-na-osnove-termorasshirennogo-grafita-trg/
  • Krause P. C., Wasynczuk O., Sudhoff S., Pekarek P. Analysis of electric machinery and drive systems. Third edition, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2013. 676.
  • Jelali M., Kroll A. Hydraulic Servo-systems. Advances in Industrial Control., 2003, doi:10.1007/978–1–4471–0099–7.
  • Dorr H. et al. Hydraulic Trainer, Volume 2: Proportional and Servo Valve Technology. Mannesmann Rexroth, USA, 1986. 265.
  • Mamèic S., & Sogdevièius, M. Simulation of dynamic processes in hydraulic accumulators. Transport, 2010, 25(2), 215–221.
  • Goebel F., Sanfelice R. G., Teel A. Hybrid dynamical systems. IEEE Control Systems,2009, 29(2), 28–93.
  • Duindam V., Macchelli A., Stramigioli S., &Bruyninckx H. Port-Based Modeling of Dynamic Systems. Modeling and Control of Complex Physical Systems, 2009, 1–52.
  • Liceaga-Castro E., Qiao H., Liceaga-Castro J. Modelling and control of a marine robot arm. Proceedings of the 30th IEEE Conference on Decision and Control, 1991, 1, 704–705.
  • Cuadrado J., Naya M., Dopico D. D., Lugrís U. Efficient augmented Lagrangian formulation for the combined simulation of multibody and hydraulic dynamics. 5th Asian Conference on Multibody Dynamics 2010, 280–290.
  • Rahikainen J., González F., Naya M. Á., Sopanen J., &Mikkola A. On the cosimulation of multibody systems and hydraulic dynamics. Multibody System Dynamics, 2020, doi:10.1007/s11044–020–09727-z.
  • Xu B., Cheng M. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends. Front. Mech. Eng. 13, 2018, 13, 151–166.
  • Huova M. Energy efficient digital hydraulic valve control. Dissertation for the Doctoral Degree. Tampere: Tampere University of Technology, 2015.
  • Manring N. D., Mehta V. S. Physical limitations for the bandwidth frequency of a pressure controlled, axial-piston pump. Journal of Dynamic Systems, Measurement, and Control, 2011, 133(6), 50–62.
  • Grabbel J., Ivantysynova M. An investigation of swash plate control concepts for displacement controlled actuators. International Journal of Fluid Power, 2005, 6(2), 19–36.
  • Siciliano B., Sciavicco L., Villani L., Oriolo G. Robotics Modelling, Planning and Control. Springer-Verlag London, 2009. 623.
  • Yao J., Wang C. Model reference adaptive control for a hydraulic underwater manipulator. J. Vib. Contr.,2012, 18(6), 893–902.
  • Lee M., Choi H.-S. A robust neural controller for underwater robot manipulators. IEEE Trans. Neural Network, 2000, 11(6), 1465–1470.
  • Yuh J., Zhao S., Lee P. M. Application of adaptive disturbance observer control to an underwater manipulator. Proceedings of the IEEE International Conference on Robotics and Automation, 2001 ICRA,2001, 4, 3244–3249.
  • Kwon D.S., Ryu J. H., Lee P. M., Hong S. W. Design of a teleoperation controller for an underwater manipulator. Proceedings of the IEEE International Conference on Robotics and Automation, 2000 ICRA. Millennium Conference, 2000, 4, 3114–3119.
  • Xu G., Xiao Z., Guo Y., Xiang X. Trajectory tracking for underwater manipulator using sliding mode control. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2007, 2127–2132.
  • Mohan S., Kim J. Robust PID control for position tracking of an underwater manipulator. Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2015, a. 1707–1712.
  • Venkatesan V., Mohan S., Kim J. Disturbance observer based terminal sliding mode control of an underwater manipulator. Proceedings of the 2014 13th International Conference on Control Automation Robotics Vision (ICARCV), 2014, 1566–1572.
  • Mohan S., Kim J. Robust PID control for position tracking of an underwater manipulator. Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2015, a. 1707–1712.
  • Ding R., Xu B., Zhang J., et al. Bumpless mode switch of independent metering fluid power system for mobile machinery. Automation in Construction, 2016, 68, 52–64.
  • Xu B., Cheng M., Yang H., et al. A hybrid displacement/pressure control scheme for an electrohydraulic flow matching system. IEEE/ASME Transactions on Mechatronics, 2015, 20(6), 2771–2782
  • Wang L., Wang C., Wang W., Wang C. A novel hybrid control method for the underwater manipulator. 2008 International Workshop on Education Technology and Training, 2008 International Workshop on Geoscience and Remote Sensing, 2008, 1, 790–794.
  • Suboh S.M., Rahman I. A., Arshad M. R., Mahyuddin M. N. Modeling and control of 2-DOF underwater planar manipulator. Indian J. GeoMar. Sci., 2009, 38, 365–371.
  • Pandian S.R., Sakagami N. A neuro-fuzzy controller for underwater robot manipulators. Proceedings of the 2010 11th International Conference on Control Automation Robotics Vision, 2010, 2135–2140.
  • Zaev E., Rath G., Kargl H., et al. Energy efficient active vibration damping. Proceedings of the 13th Scandinavian International Conference on Fluid Power. Linköping, 2013, 355–364
  • Fossen T. I. Handbook of marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, 2011, 582.
  • Khalil W., Dombre E., 2004. Modeling, Identification and Control of Robots. Butterworth-Heinemann, 2004, 483.
  • Kim Y.-B., Kim P.-Y., Murrenhoff H. Boom Potential Energy Regeneration Scheme for Hydraulic Excavators. BATH/ASME 2016 Symposium on Fluid Power and Motion Control, 2016.
  • The Drive & Control Company. Virtual bleed off VBO. Retrieved – Access: https://dc-corp. resource.bosch.com/media/xc/company_1/press/product_information/product_information_2013/pi_april_2013/PI_032_13_VBO_en.pdf
  • Clegg A. C., Dunnigan M. W., Lane D. M. Self-tuning position and force control of an underwater hydraulic manipulator. Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, 4, 3226–3231.
  • Xu B., Sakagami N., Pandian S. R., Petry F. A fuzzy controller for underwater vehicle-manipulator systems. Proceedings of the OCEANS 2005 MTS/IEEE,2005, 2, 1110–1115
  • Schjølberg I., Fossen T. I. Modelling and control of underwater vehicle-manipulator systems. Proceedings of the 3rd Conference on Marine Craft Maneuvering and Control, 1994.
Еще
Статья научная