Голоморфные вырожденные группы операторов в квазибанаховых пространствах

Автор: Келлер Алевтина Викторовна, Аль-Делфи Джавад Кадим

Журнал: Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика @vestnik-susu-mmph

Рубрика: Математика

Статья в выпуске: 1 т.7, 2015 года.

Бесплатный доступ

Дифференциальные уравнения, неразрешенные относительно старшей производной, впервые появились, по-видимому, в конце позапрошлого века. Отдавая дань С.Л. Соболеву, который начал систематическое исследование таких уравнений, их часто называют уравнениями соболевского типа. В силу того, что интерес к уравнениям соболевского типа за последнее время существенно вырос, то возникла необходимость их рассмотрения в квазибанаховых пространствах. Теория голоморфных вырожденных групп операторов, развитая в банаховых пространствах и пространствах Фреше, переносится в квазибанаховы пространства. Абстрактные результаты иллюстрированы конкретными примерами. Статья кроме введения и списка литературы содержит три части. В первой из них приводятся сведения об относительно p-ограниченных операторах в квазибанаховых пространствах. Во второй части строятся голоморфные группы разрешающих операторов. А в третьей приводятся достаточные условия для того, чтобы пара операторов порождала группу разрешающих операторов.

Еще

Вырожденные группы операторов, квазибанаховы пространства, уравнения соболевского типа

Короткий адрес: https://sciup.org/147158843

IDR: 147158843

Список литературы Голоморфные вырожденные группы операторов в квазибанаховых пространствах

  • Свиридюк, Г.А. К общей теории полугрупп операторов/Г.А. Свиридюк//Успехи математических наук. -1994. -Т. 49, № 4. -С. 47-74.
  • Showalter, R.E. The Sobolev type equations. I (II)/R.E Showalter//Appl. Anal. -1975. -V. 5, № 1 (2). -P. 15-22 (P. 81-99).
  • Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators/G.A. Sviridyuk, V.E. Fedorov. -Utrecht, Boston: VSP, 2003. -216 p.
  • Шестаков, А.Л. Численное решение задачи оптимального измерения/А.Л. Шестаков, А.В. Келлер, Е.И. Назарова//Автоматика и телемеханика. -2012. -№ 1. -C. 107-115.
  • Манакова, Н.А. Оптимальное управление решениями начально-конечной задачи для линейных уравнений соболевского типа/Н.А. Манакова, А.Г. Дыльков//Вестник ЮУрГУ. Серия «Математическое моделирование и программирование». -2011. -№ 17 (234). -С. 113-114.
  • Свиридюк, Г.А. Инвариантные пространства и дихотомии решений одного класса линейных уравнений типа Соболева/Г.А. Свиридюк, А.В. Келлер//Известия вузов. Математика. -1997. -№ 5. -C. 60-68.
  • Сагадеева, М.А. Дихотомии решений линейных уравнений соболевского типа/М.А. Сагадеева. -Челябинск: Изд. центр ЮУрГУ, 2012. -139 c.
  • Замышляева, А.А. Линейные уравнения соболевского типа высокого порядка/А.А. Замышляева. -Челябинск: Изд. центр ЮУрГУ, 2012. -107 c.
  • Федоров, В.Е. Голоморфные разрешающие полугруппы уравнений соболевского типа в локально выпуклых пространствах/В.Е. Федоров//Мат. сб. -2004. -Т. 195, № 8. -С. 131-160.
  • Demidenko, G.V. Partial differential equations and systems not solvable with respect to the highest -order derivative/G.V. Demidenko, S.V. Uspenskii. -New York -Basel -Hong Kong: Marcel Dekker, Inc., 2003. -239 p.
  • Линейные и нелинейные уравнения соболевского типа/А.Г. Свешников, А.Б. Альшин, М.О. Корпусов, Ю.Д. Плетнер. -М.: ФИЗМАТЛИТ, 2007. -736 с.
  • Lyapunov-Shmidt Methods in Nonlinear Analysis and Applications/N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev. -Dordrecht, Boston, London: Kluwer Academic Publishers, 2002. -548 p.
  • Берг, Й. Интерполяционные пространства. Введение/Й. Берг, Й. Лёфстрём. -М.: Мир, 1980. -264 p.
  • Аль-Делфи, Дж.К. Квазисоболевы пространства ℓpm/Дж.К. Аль-Делфи//Вестник ЮУрГУ. Серия «Математика. Механика. Физика». -2013. -Т. 5, № 1. -С. 107-109.
  • Свиридюк, Г.А. Квазиоператор Лапласа в квазибанаховых пространствах/Г.А. Свиридюк, Дж.К. Аль-Делфи//Дифференциальные уравнения. Функциональные пространства. Теория приближений. Тезисы Международной конференции, посвященной 105-летию со дня рождения С.Л. Соболева. -Новосибирск, 2013. -С. 247
  • Аль-Делфи, Дж.К. Квазиоператор Лапласа в квазисоболевых пространствах/Дж.К. Аль-Делфи//Вестн. Сам. гос. техн. ун-та. Сер.: Физ.-мат. науки. -2013. -Вып. 2 (31). -С. 13-16.
  • Свиридюк, Г.А. Задача Шоуолтера-Сидорова как феномен уравнений соболевского типа/Г.А. Свиридюк, С.А. Загребина//Известия Иркутского государственного университета. Серия: Математика. -2010. -Т. 3, № 1. -С. 104-125.
  • Свиридюк, Г.А. Неклассические модели математической физики/Г.А. Свиридюк, С.А. Загребина//Вестник ЮУрГУ. Серия «Математическое моделирование и программирование». -2012. -№ 40 (299). -С. 7-18.
Еще
Статья научная