GPR tomography as applied to delineation of voids

Автор: Sudakova M.S., Kalashnikov A.Y., Terentieva E.B.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 9 (60), 2017 года.

Бесплатный доступ

This work presents the evaluation effectiveness of the GPR tomography for characterization of square voids in engineering structures. One of the columns of the iconic main building of the Moscow State University was selected as a target object with known configuration. Given that the heterogeneity of the column complicates the interpretation of GPR data acquired in reflection mode, transmission tomographic ray coverage was employed. Mathematical modelling and tomographic inversion to locate real objects were carried out. The radar tomography and the common-offset GPR geometry techniques are compared with respect to the acquired information about location, shape and dimensions of the void inside the column. The tomography results are characterized by high precision and are more reliable compared to the results of single-fold GPR survey.

Еще

Non-destructive testing, electromagnetic methods, forward and inverse problem solving, mathematical modeling, ground penetrating radar, tomography

Короткий адрес: https://sciup.org/143163586

IDR: 143163586

Список литературы GPR tomography as applied to delineation of voids

  • Barrile V., and R. Pucinotti. Application of radar technology to reinforced concrete structures: A case study. NDT & E International,2005. Vol. 38 (7). pp. 596-604.
  • Hugenschmidt J. Concrete bridge inspection with a mobile GPR system. Construction and Building Materials. 2002. Vol. 16. pp. 147 -154.
  • Santos-Assunçao S., Perez-Gracia V., Caselles O., Clapes J. and Salinas V. Assessment of Complex Masonry Structures with GPR Compared to Other Non-Destructive Testing Studies. Remote Sensing. 2014. Vol. 6. pp. 8220-8237; DOI: 10.3390/rs6098220
  • Hamrouche R., Klysz G., Balayssac J.-P., Rhazi J. and Ballivy G. Numerical Simulations and Laboratory Tests to Explore the Potential of Ground-Penetrating Radar (GPR) in Detecting Unfilled Joints in Brick Masonry Structures. International Journal of Architectural Heritage: Conservation, Analysis, and Restoration. 2012. 6:6. pp. 648-664.
  • Sbartaï Z. M., Laurens S., Balayssac J.-P., Arliguie G. and Ballivy G. Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures. NDT & E International. 2006. Vol. 39 (5). pp. 400-407.
  • Klysz G., and J.-P Balayssac. Determination of volumetric water content of concrete using ground-penetrating radar. Cement and Concrete Research. 2007. Vol. 37(8). pp. 1164-1171.
  • Hugenschmidt J., Loser R. Detection of chlorides and moisture in concrete structures with Ground penetrating radar. Materials and Structures. 2008. Vol. 41. pp. 785-792.
  • Maierhofer C., and Leipold S. Radar investigation of masonry structures. NDT & E International. 2001. Vol. 34 (2). pp. 139-147.
  • Roberts R., Corcoran K., Arvanitis M., and Schutz A. Insulated Concrete form Void Detection Using Ground Penetrating Radar. In: PIERS Proceedings, 2011. Marrakesh, MOROCCO, March 20-23.
  • Mathewson J. C., Evans D., Leone C., Leathard M., Dangerfield J., Tonning S. A. Improved imaging and resolution of overburden heterogeneity by combining amplitude inversion and tomography. 2012. SEG 2012 Annual Meeting. 5. Las Vegas. Pp. 4271-4274.
  • Nolet G. A breviary of seismic tomography, imaging the Interior of the Earth and Sun. 2008. Cambridge: Cambridge University Press.
  • Aki K., Lee W.H.K. Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes. 1976. 1. A homogeneous intial model. Journal of Geophysical Research. Vol. 81. pp. 4381-4399.
  • Chao-Ying Bai and Stewart Greenhalgh. 3-D Non-linear Travel-time Tomography: Imaging High Contrast. Pure and Applied Geophysics. 2005. Vol. 162. pp. 2029-2049.
  • Moser T. J. Shortest Path Calculation of Seismic Rays. Geophysics. 1991. Vol. 56. pp. 59-67.
  • Gruber T. and Greenhalgh S.A. Short Note: Precision Analysis of First-break times in Grid Models. Geophysics. 1998. vol. 63. pp. 1062-1065.
  • Fischer R. and Lees J.M. Shortest Path Ray Tracing with Sparse Graphs. Geophysics. 1994. vol. 58. pp. 987-996.
  • Chen Guo-Jin, Cao Hui, Wu Tong-Shuan, Zou Fei, Yao Zhen-Zing. Effects of velocity contrast on the quality of crosswell traveltime tomography and an imploved method. Chinese Journal of geophysics. 2006. vol. 49 (3). pp. 810-818.
  • Hauser, K., Jackson, M., Lane, J., Hodges, R. Deep tunnel detection using crosshole radar tomography. Proceedings SAGEEP’95. 1995. Orlando, FL. pp. 853-857.
  • Tronicke J., Tweeton, D.R., Dietrich P., Appel E. Improved crosshole radar tomography by using direct and reflected arrival times. Journal of Applied Geophysics. 2001. Vol. 47. pp. 97-105.
  • Wenfrich A., Trela Ch., Krause M., Maierhofer Ch., Effner U., Wostmann J. Location of Voids in Masonry Structures by Using Radar and Ultrasonic Traveltime Tomography. In: Tu.3.2.5 Bundesanstalt für Materialforschung und -prüfung (BAM). Berlin: ECNDT Tu.3.2.5 Bundesanstalt für Materialforschung und -prüfung (BAM). 2006. Berlin. Germany.
  • Яновская Т.Б. Проблемы сейсмотомографии//Проблемы геотомографии. М.: Наука, 1997. С. 86-98.
  • Bleistein N. Mathematical methods for wave phenomena. Academic Press, 1984. p. 341.
  • Hung, S., Dahlen, F. & Nolet, G. Wavefront healing: a banana-doughnut perspective. Geophys. J. Int. 2001. vol. 146. pp. 289-312.
  • Malcolm A.E., Trampert J., Tomographic errors from wave front healing: more than just a fast bias. Geophys. J. Int. 2011. Vol. 185 (1). pp. 385-402.
  • Starovoytov A.V., Romanova A.M., Kalashnikov A.Yu. GPR study of depressed areas in the upper cross-section. EAGE Near Surface. 2011. Manchester, UK.
  • Tweeton, D.R., Jackson M.J. and K.S. Roessler. BOMCRATR -A Curved Ray Tomographic Computer Program for Geophysical Applications. 1992. USBM RI 9411. 39.
  • Lytle R.J, Dines K.A., Laine E.F., and Lager D.L. Electromagnetic Cross-Borehole Survey of a Site Proposed for an Urban Transit Station.1978. UCRL-52484, Lawrence Livermore Laboratory. University of California. 19.
  • Peterson J. E., Paulson B. N. P., and McEvilly T. V. Applications of Algebraic Reconstruction Techniques to Crosshole Seismic Data. Geophysics. 1985. Vol. 50. pp. 1566-1580.
  • Lehmann B. Seismic Traveltime Tomography for Engineering and Exploration Applications. 2007. EAGE Publications bv, DB Houton, the Netherlands. pp. 28-32.
  • Um, J. and C. Thurber. A Fast Algorithm for Two-Point Seismic Ray Tracing. Bulletin of Seismological Society of America. 1987. Vol. 77. pp. 972-986.
  • Ernst J., Green A., Maurer H., and Holliger K. Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data. GEOPHYSICS, September-October 2007, Vol. 72. No. 5: pp. J53-J64
  • Watson. F. Towards 3D full-wave inversion for GPR. 2016 IEEE Radar Conference (RadarConf). 1-6.
Еще
Статья научная